

Probing the polarized FF in unpolarized collisions

Shu-Yi Wei (Shandong University) shuyi@sdu.edu.cn

H.C. Zhang, S.Y. Wei; PLB 839, 137821 (2023) *X.W. Li, Z.X. Chen, S. Cao, S.Y. Wei*, PRD 109, 014035 (2024)

Contents

Introduction

V Polarization in Unpolarized Collisions

Polarization and Jet Quenching

Summary and Outlook

QCD factorization

Baryons

Number density of longitudinally polarized hadrons produced from longitudinally polarized quarks.

Shu-yi Wei Polarized Fragmentation Functions

or

weak interaction

Shu-yi Wei

Single Inclusive Λ Production in e⁺e⁻ Annihilation Experiment

Single Inclusive Λ Production in e⁺e⁻ Annihilation Experiment

Shu-yi Wei

Shu-yi Wei

Single Inclusive Λ Production in e^e Annihilation Experiment

$\Lambda\bar{\Lambda}$ -pair Production in e⁺e⁻ Annihilation Experiment

Melicity Conservation

q and \bar{q} are on the same fermion line. They must have opposite helicities.

M Polarization Correlation

A novel probe to the spin-dependent fragmentation functions

H.C. Zhang, SYW; PLB 839 (2023) 137821 see also Nucl. Phys. B 445 (1995) 380.

Helicity Amplitude Approach

Helicity Amplitude Approach

 $\sigma_{\lambda_q \lambda_{\bar{q}}}$ denotes the differential X of $q\bar{q}$ -pair production $\sigma_{+-} = \sigma_{-+} = \sigma_0/2$ $\sigma_{++} = \sigma_{--} = 0$

D denotes the helicity dependent fragmentation function

$$\mathcal{D}(\lambda_q, \lambda_\Lambda, z) = D_{1q}(z) + \lambda_q \lambda_\Lambda G_{1Lq}(z)$$

Physical interpretation:

$$\begin{split} \frac{d\sigma}{dPS} &= \sigma_{+-} \otimes \mathscr{D}_q(+,\lambda_{\Lambda},z_1) \otimes \mathscr{D}_{\bar{q}}(-,\lambda_{\bar{\Lambda}},z_2) + \sigma_{-+} \otimes \mathscr{D}_q(-,\lambda_{\Lambda},z_1) \otimes \mathscr{D}_{\bar{q}}(+,\lambda_{\bar{\Lambda}},z_2) \\ &= \sigma_0 \left[D_{1q}^{\Lambda}(z_1) D_{1\bar{q}}^{\bar{\Lambda}}(z_2) - \lambda_{\Lambda} \lambda_{\bar{\Lambda}} G_{1Lq}^{\Lambda}(z_1) G_{1L\bar{q}}^{\bar{\Lambda}}(z_2) \right] \end{split}$$

H.C. Zhang, SYW; PLB 839 (2023) 137821 see also Nucl. Phys. B 445 (1995) 380.

Polarization Correlation of $\Lambda\bar{\Lambda}$ -pair

Applying to the unpolarized pp collisions

$$a + b \rightarrow c(\lambda_c) + d(\lambda_d)$$

 $\mathbf{\underline{\textit{M}}} \text{ Are } \lambda_c \text{ and } \lambda_d \text{ correlated}?$

Yes!

"s-channel diagrams": just like e^+e^- annihilation, maximum correlation

Helicity Amplitude Approach

"t-channel diagrams": prefer same-sign correlation

To summarize

- **Solution** "s-channel": $\sigma_{+-} = \sigma_{-+} > \sigma_{++} = \sigma_{--} = 0$
- **S** "t-channel": $\sigma_{++} = \sigma_{--} > \sigma_{+-} = \sigma_{-+} > 0$

M Probe polarized FF in unpolarized pp collisions

Solution Explore the circularly polarized gluon FF

INTERNATIONAL SERIES OF MONOGRAPHS ON PHYSICS - 80 The Ubiquitous Photon Ubiquitous Photon Helicity Method for QED and QCD R. GASTMANS and TAI TSUN WU

OXFORD SCIENCE PUBLICATIONS

Shu-yi Wei

Polarization Correlation in unpolarized pp collisions

Shu-yi Wei

Polarization and Jet Quenching

Keywords of Jet Quenching

Polarization and Jet Quenching

Polarization Correlation in central and peripheral AA collisions

Shu-yi Wei

Polarization and Jet Quenching

Polarization Correlation in ultra-peripheral AA collisions

Shu-yi Wei Polarized Fragmentation Functions

Spin effects can also be studied in unpolarized collisions.

☑ The combination of hadron polarization and jet quenching offers a new platform to study the jet medium interaction.

Besides this talk, we also studied other spin effects in unpolarized collisions. Phys.Lett.B 816, 136217 (2021). Phys.Rev.D105, 034027 (2022).

The End

Probing G_{1L} in unpolared pp collisions

Polarization Correlation in unpolarized pp collisions

Shu-yi Wei