Studying hadronization at LHCb

Transverse-momentum-dependent fragmentation functions

Cynthia Nuñez On behalf of the LHCb Collaboration DIS 2024, WG5 Spin and 3D Structure April 11, 2024

Introduction

Hadronization

- **Parton Distribution Functions (PDFs):** probability of finding a parton inside a hadron
- Fragmentation Functions (FFs): probability of an outgoing parton transforming into a hadron
- Transverse-momentum-dependent: spin-momentum correlations
- Important processes in studying hadron formation:

 $\sigma^{e^+e^- \to hX} = \hat{\sigma} \otimes FF$ $\sigma^{lN \to lhX} = PDF \otimes \hat{\sigma} \otimes FF$ $\sigma^{pp \to hX} = PDF \otimes PDF \otimes \hat{\sigma} \otimes FF$

TMD PDF: Leading Twist TMDs (🛶) Quark Spin → Nucleon Spin **Quark Polarization Un-Polarized** Longitudinally Polarized **Transversely Polarized** (U) (L) (T) $f_1 = (\bullet)$ **Nucleon Polarization** $g_{ij} = (\bullet) \rightarrow$ $h_{1L}^{\perp} = ()$ Worm gear h,= $f_{1T} = \bullet - \bullet g_{1T} = \bullet$

TMD FF:

Quark Hadron	U	L	т	
U	<i>D</i> ₁		H_1^{\perp}	
L		G_{1L}	H_{1L}^{\perp} H_{1}, H_{1T}^{\perp}	
Т	D_{1T}^{\perp}	G_{1T}		

Unpolarized: D_1 Spin-spin correlations: G_{1L} , H_1 Spin-momentum correlations: D_{1T}^{\perp} , G_{1T} , H_{1L}^{\perp} , H_1^{\perp} , H_{1T}^{\perp}

Outline

- Large hadron collider beauty (LHCb) detector
- Hadronization in jets (TMD jet FF)
 - Charged hadron in jets (results)
 - Identified charged hadrons in jets (results)
 - Heavy quark jet hadronization (prospective)
- Hyperon polarization
 - Λ and $\overline{\Lambda}$ heavy-ion *p*Pb (prospective) and fixed-target *p*Ne (results)
 - Λ_c^+ polarization (results and prospective)
- Polarized target program at LHC (LHCSpin)

Large Hadron Collider beauty (LHCb) Experiment

- Forward spectrometer designed to search for CP violation and rare decays of b and c hadrons
- Fully instrumented $2 < \eta < 5$

Int. J. Mod. Phys. A 30, 1530022 (2015)

PRL 123, 232001 (2019)

PRD 108, L031103 (2023)

Jet substructure

- Jet: collimated spray of particles
- Contains information about partons scattered out of proton during collision
 - Probe hadronization dynamics, flavor dependence, etc.

Jet substructure at LHCb PRL 123, 232001 (2019)

- TMD Jet Fragmentation Functions: (z, r, j_T)
- Measurement of Z-tagged jets
 - sensitive to light quark jets

 $qg \rightarrow Zq \rightarrow Z + jet$

Jet substructure at LHCb PRL 123, 232001 (2019)

- 1D measurement of charged hadrons in Z+jet
 - pp data , ~2 fb⁻¹, $\sqrt{s} = 8$ TeV
 - Jets produced in association with a Z $\rightarrow \mu\mu$ boson
 - Jets are clustered with the anti- k_T algorithm

Light quark fragmentation in jets PRL 123, 232001 (2019) $pp \rightarrow Z + jet$

- Have more hadrons in jets with higher jet p_T along jet axis
- Compared to ATLAS-inclusive jets at midrapidity sensitive to gluon jets
- Light quark-initiated jets are more collimated than gluon jets

 $r = \sqrt{(\phi_h - \phi_{jet})^2 + (y_h - y_{jet})^2}$

0.4

 Z^0

TMD jet fragmentation functions for identified hadrons: π^{\pm} , K^{\pm} , p^{\pm}

- Charged hadron formation in jet dominated by π^{\pm}
- Heavier hadrons require larger momentum fraction, z, for formation
- Simulation (Pythia8) overestimates K^{\pm} and p^{\pm} production at low jet p_T

University of Michigan

Heavy flavor in jets

- Complementary to the LHCb Z + jet hadronization
- Expand on LHCb study of J/ψ production in jets PRL 118, 192001 (2017)
- Access to heavy-quark TMD FF
 - *b* and *c* jets using Secondary Vertex tagging
 - Identified heavy flavor hadrons in jets

Final states: produced hadrons

SV-tagger Boosted Decision Tree fit results for B + jet BDT(blc) BDT(b|c)LHCb data LHCb fit 800 800 0.5 500 500 400 400 300 300 -0.5 -0.5 200 200 100 B+jet -100-0.5 Ω 0.5 -0.5 Δ 0.5 BDT(bcludsg) BDT(bcludsg) candidates candidates LHCb LHCb 3000 data data b 2000 С udsg udsg 2000 1000

0.5

BDT(bcludsg)

-0.5

JINST 10 (2015) P06013

Cynthia Nuñez

0.5

BDT(b|c)

-0.5

arXiv:2307.07878

LHCb-PAPER-2024-009, in preparation

Λ (uds) polarization

- First observed in 1976 in unpolarized *p*Be
- Spontaneous transverse polarization values up to 30%
- Contradictory to understanding at the time that transverse-spin asymmetries suppressed in pQCD
- Observed non-zero polarization in e^+e^- for Λ and $\overline{\Lambda}$
 - \rightarrow hadronization effect

*sign convention different when compared to later measurements

Λ (uds) polarization

<u>K. Heller, Proceedings, 12th International</u> Symposium on Spin Physics, Amsterdam, 1996

Common features observed

- Negative* and ~independent of the beam energy
- Increases with $|x_F|$ and p_T
- Polarization has been observed for beams other than proton including e^{\pm} on target nuclei, π^{\pm} , $K^{\pm}, \Sigma^{-}, \nu N, n, \gamma$

In unpolarized hadronic collisions, **polarization of other hyperons also observed**:

- Negative polarization for Λ , Ξ^0 , Ξ^- , and $\overline{\Xi}^-$
- Positive polarization for Σ^+ , Σ^- , Σ^0 , and $\overline{\Sigma}^+$
- Zero polarization $\Omega, \overline{\Lambda}$

*sign convention different when compared to earlier measurements

Frameworks to explain Λ polarization

Approaches in explaining transverse Λ polarization in unpolarized collisions have focused on:

- Polarizing transverse-momentum dependent (TMD) fragmentation functions (FF) $D_{1T}^{\perp \Lambda/q}(z, k_{\perp}^2)$
- Higher twist multiparton correlators

Unpolarized: D_1 Spin-spin correlations: G_{1L} , H_1 Spin-momentum correlations: D_{1T}^{\perp} , G_{1T} , H_{1L}^{\perp} , H_1^{\perp} , H_{1T}^{\perp}

> PRD 63, 054029 (2001) PLB 809, 135756 (2020) PRD 95, 114013 (2017)

Cynthia Nuñez

. . .

Transverse Λ polarization

- A hyperon: $m_{\Lambda} = 1115.683 \pm 0.006 \text{ MeV}/c^2$ and $c\tau = 7.89 \text{ cm}$
- $\Lambda \rightarrow p\pi^-$ self analyzing decay
- Transverse polarization measured in the direction normal to the Λ hyperon and beam momentum: $\vec{n} = \vec{p}_{beam} \times \vec{p}_{\Lambda}$
- The distribution of θ^* for polarized Λ :

$$\frac{dN}{d\cos\theta^*} = \frac{N}{2}(1 + \alpha_{\Lambda}P\cos\theta^*)\varepsilon_{tot}(\cos\theta^*)$$

 $\alpha_{\Lambda} = 0.748 \pm 0.007 \text{ PDG 2023}$

LHCb measured value of $0.74^{+0.04}_{-0.03}$ JHEP 2006 (2020) 110

LHCb Experimental Data

Colliding beam mode:

Forward *p*Pb 1. $5 < y^* < 4.5$

Backward Pb $p - 5.0 < y^* < -2.5$

LHCb Experimental Data

Fixed-target mode

System for Measuring the Overlap with Gas (SMOG)

injection of noble gases into interaction region

 $\sqrt{s_{NN}} \sim 41 - 110 \text{ GeV}$

Central and backward rapidity $y^* \sim 3.8 - 4.8$ large negative x_F corresponds to large x in target nucleon

• Allow observation of particles with larger $|x_F|$

Transverse Λ and $\overline{\Lambda}$ polarization measurement

LHCb-PAPER-2024-009 *in preparation*

Polarization in bins of p_T , η , y, and x_F

• $300 < p_T < 3000$ MeV/c

2 < η < 5

 $P(\Lambda) = 0.029 \pm 0.019 \pm 0.012$ $P(\bar{\Lambda}) = 0.003 \pm 0.023 \pm 0.014$

> See talk by C. De Angelis April 9, 2024, 2:10 PM in WG4

Transverse Λ and $\overline{\Lambda}$ polarization measurement

Comparison with previous results $P(-x_F) = -P(x_F)$

Very good agreement with previous measurements

See talk by C. De Angelis April 9, 2024, 2:10 PM in WG4

Run 3 upgrade: SMOG2

Target storage cell installed for Run 3

- Increased gas pressure •
- **Higher luminosity** •

×10³

180

160

140

120

100

80

60

40

20

Candidates

Well-defined separation from *pp* •

SMOG2 cell (pAr)

 $\sqrt{s_{NN}}$ =113 GeV

-400

-200

LHCb-FIGURE-2023-001

Interaction region (*pp*)

0

Wider target species variety •

Cynthia Nuñez

-600

Λ_c^+ polarization at LHCb

- Polarization measurement of Λ_c^+ to understand hadronization of heavy charm quarks
- Test models for Λ polarization in the production of heavy- flavor hadrons
 - Test x_F and p_T dependence comparable to Λ data

 θ_p, ϕ_p polar (azimuthal) angle of the proton in the Λ_c^+ rest frame χ angle between $K\pi$ and $(\hat{z}, \overrightarrow{p_p})$ decay plane

Λ_{c}^{+} polarization at LHCb PRD 108 (2023) 1, 012023, JHEP2307 (2023) 228

- LHCb unpolarized $pp \sqrt{s} = 13 \text{ TeV}$
 - Transverse polarization in lab frame (%): $P_x(\Lambda_c^+) = 60.32 \pm 0.68 \pm 0.98 \pm 0.21$
 - Longitudinal polarization in lab frame (%): $P_z(\Lambda_c^+) = -24.7 \pm 0.6 \pm 0.3 \pm 1.1$

 θ_p, ϕ_p polar (azimuthal) angle of the proton in the Λ_c^+ rest frame χ angle between $K\pi$ and $(\hat{z}, \overrightarrow{p_p})$ decay plane

Polarized target program at LHC

arXiv:1901.08002

LHCSpin Project

- Supported R&D to add a transversely polarized target by 2029
- Polarized physics at the LHC:
 - Polarized quark and gluon distribution at high x and intermediate Q^2
 - Test process dependence of quark and gluon TMDs
 - Complementary measurements to existing and future SIDIS

- TMD Jet Fragmentation Functions
 - Measured charged hadrons in jets at $\sqrt{s} = 13$ and 8 TeV
 - Multi-differential TMD JFF measured for charged pions, kaons, and protons
- Heavy flavor jets
 - Measurement of charged hadrons and heavy flavor hadrons in b- and c-jets
- Hyperon polarization

See talk by C. De Angelis April 9, 2024, 2:10 PM in WG4

- Measurement of Λ and $\overline{\Lambda}$ in *p*Pb, Pbp, and fixed-target *p*Ne data
- Λ_c^+ polarization
- LHCSpin: polarized physics at LHC by adding a transversely polarized target

Back up

Kang, Lee, Terry, Xing PLB 798, 134978 (2019)

Cynthia Nuñez

University of Michigan

Heavy flavor jets

 Secondary Vertex tagging (SVtagger) identifies SV within a jet, and uses boosted decision trees (BDTs) for flavor discrimination

SV-tagger BDT results for the B+jet data

Heavy flavor jets

2015 JINST 10 P06013

 Secondary Vertex tagging (SVtagger) identifies SV within a jet, and uses boosted decision trees (BDTs) for flavor discrimination

SV-tagger BDT simulation

Backup

- SIDIS: Polarization positive in both forward and backward direction.
- For K^- and Σ^- beams the polarization was positive at positive x_F
- π^- beams the polarization was positive at negative x_F

Other not shown:

- The same polarization sign and general x_F dependence has been observed for neutron beams
- The polarization was measured to be consistent with zero for π⁺ and K⁺beams
- Polarization measured in $\nu_{\mu}N$ consistent with unpolarized pp experiments for both Λ and $\overline{\Lambda}$

University of Michigan

EPJC 32, 221(2004)

Backup

Other hyperons

0.4 H P+H+H+ anything F

In unpolarized hadronic collisions:

- Negative polarization for Λ , Ξ^0 , Ξ^- , and $\overline{\Xi}^-$
- Positive polarization for Σ^+ , Σ^- , Σ^0 , and $\overline{\Sigma}^+$
- Zero polarization $\Omega, \overline{\Lambda}$

<u>K. Heller, Proceedings, 12th</u> <u>International Symposium on</u> <u>Spin Physics, Amsterdam, 1996</u>

Why are some hyperons polarized while others are not?

Cynthia Nuñez

University of Michigan

Backup

$p \operatorname{Ne} \Lambda$ and $\overline{\Lambda}$ transverse polarization

Systematic uncertainties

	contribution	Λ	$ar{\Lambda}$
-	signal estimation	0.007	0.001
	background estimation	0.001	0.010
	kinematical weights uncertainties	0.001	0.001
	multiplicity dependence	0.001	0.004
	binning of the $\cos \theta$ distributions	0.007	0.006
	PID efficiencies	0.002	0.005
	nonprompt contamination	0.005	0.002

Cynthia Nuñez

University of Michigan