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Introduction

- proton structure known to percent level? — only unpolarized!
- helicity-dependent PDFs highly unconstrained
- BNL Electron-lon-Collider promises percent-level accuracy also
for polarized PDFs
— requires inclusive, but also less inclusive observables at NNLO

- polarized SIDIS
- jet observables
- this talk:
- infrared structure of real radiation in longitudinally

polarized matrix elements
- in Larin 45 scheme [Larin, Vermaseren '91; Larin '93]
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Anatomy of amplitudes up to NNLO ...

..and where they first appear
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Observables up to NNLO
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with Mf,',) with the amplitude with m final-state partons and [ loops,
Jm the jet functions selecting m jets out of the final state momenta,
and d¢p, the m particle phase space
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Infrared divergences
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at NLO:

V explicit UV (— renormalization) and IR poles from loop
integration

R implicit infrared (IR) divergences, manifest only after phase
space integration

V+ R divergence free (modulo mass factorization) [KLN theorem]

Problem: analytical integration of exclusive phase spaces too hard
— numerical integration (MC)

But: numerical integration only in integer dimensions 7 divergent \ /
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Wishful thinking ... Subtraction

We could try to add a zero with the same infrared structure that
subtracts the divergences locally in the phase space, but that we are
somehow able to integrate analytically:
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We are lucky:

- phase spaces factorize, e.g.

d¢m+1(p17 ooy Pm1; Q) = d¢m([3% ceey ﬁm? Q) & [deJﬂ(ﬁh ceey ﬁm)]
- matrix elements factorize in singular limits

Established technique for LHC physics:

e.g. FKS [Frixione, Kunszt, Signer '95], Catani-Seymour ['96] @ NLO
polarized extension of Catani-Seymour  [Borsa, de Florian, Pedron '20]
e.g. STRIPPER [Czakon "13], Antenna [Gehrmann et al. '05] @ NNLO
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Subtraction in polarized processes

What is required?

v Phase space factorization
same in polarized and unpolarized processes
- How to build a subtraction term?
— Full understanding of factorization of matrix elements:

- Do polarized MEs factorize (vs) in infrared limits?
- What do they factorize into?

Disclaimer

- from now on consider only color-ordered matrix elements
— singular limits only between color-adjacent partons

- (A)Pjj and (A)Pjj (polarized) splitting amplitudes:
only radiative parts, unregulated endpoints, dim. reg. dependent
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IR limits: the single-unresolved case (1)

Single-soft
parametrize p; — Ap; with A — 0
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IR limits: the single-unresolved case (2)
Single-collinear: i || j, final-final
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Unpolarized and Polarized single-collinear splitting amplitudes

Unpolarized
Paq(2) = Cr
Pgq(2) = C¢
Pqg(2) = 2nsTg
Pgg(2) = Ca

— different

and polarized splitting amplitudes differ:

(12 APa(z) = ¢ [ A2 4301

T, -2k, 2(2) = Cr |7 +3(1-2)¢

r _ %)2

w - 25}, APgq(2) = Cr[2 — 2+ 2e(1 — 2)]
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22(1fz)+%+374} APy (2) = Gy [11 1+21fz]

infrared structure!

To achieve proper factorization of matrix element need to retain
entire d-dimensional structure.
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IR limits: the double-unresolved case (1)

Unconnected
singularities factorize individually like single-unresolved case

Double soft Like single-soft described by eikonal factors, initiated by
gluon

- color-ordered double-soft eikonal factors Sgq, S+, and Sgz

- S, and Sgq contain iterated soft limits

* Sgg and Sgg contain genuine double-soft limit

in the case of unpolarised soft partons i, j; otherwise zero

Soft & collinear
Overlap between subsequent triple-collinear & soft, and soft &
single-collinear, depending on position of soft parton in cluster

T~ refers to an abelian gluon in the cluster
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IR limits: the double-unresolved case (2)

Triple-collinear: i || j || k final-final
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Triple-collinear splitting amplitudes

- contain eikonal factors, iterated splitting, and “true”
triple-collinear splitting

- unpolarized case: 7 independent splitting amplitudes
Pggg, Pagg, Pavys Paaa, P~ad, Paarar, Pagq [Campbell, Glover '97]
- polarized case: 7 unpolarized + 16 polarized = 23
APAqgig, APaqyy: APaggq, APgagq, APay~q, APaqqig,
APaq g APaqag, APagag APAGgs ™ AP 6 AP R e APRYES™,
APAqgy, APagqa, APay g
- complicated structure in terms of momentum fractions

- physically understood and strongly constrained structure in
terms of Mandelstam variables [Braun-White, Glover '22]
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Example of a triple-collinear splitting function
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..and this is just one out of the 16 color-ordered azimuthally
averaged polarized structures
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How to obtain splitting amplitudes?

- unpolarized: proof of factorization with constructive method
[Catani, Grazzini '99]

- polarized:
same proof not possible for gy
instead extraction with above parametrizations from DIS
coefficient functions a la [Glover, Campbell '97]
- gy coefficient function in Photon-DIS [e.g. Zijlstra, van Neerven 93]
- gy coefficient functions in Graviton-DIS [Moch et al. "14]

— only with averaged “azimuthal correlation”,
suffer from coefficient function features in soft limit (1/z,0()

- Check: factorization still true with one extra radiated particle
— non-trivial factorization
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Conclusion

- derived all universal objects appearing in single- and
double-unresolved limits up to tree-level NNLO

- simple factorization
- next step: 1-loop single-collinear (NNLO RV)

- goals:

- complete picture of IR structure up to NNLO
- subtraction for polarized exclusive observables
- similar event generator machinery for EIC as for LHC

- a lot (of work) lies ahead ...
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Thanks for your attention!
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