Breakdown of collinear factorisation in the photoproduction of a $\pi^{0} \gamma$ pair with large invariant mass DIS 2024
Grenoble, France

April 10, 2024
Based on 2311.09146 with Jakob Schönleber, Lech Szymanowski and Samuel Wallon

Introduction

Exclusive photon-meson photoproduction

$$
\gamma(q)+N\left(p_{1}\right) \rightarrow \gamma(k)+M\left(p_{M}\right)+N^{\prime}\left(p_{2}\right)
$$

- Calculation at LO and leading twist for $M=\pi^{ \pm}, \rho_{L, T}^{0, \pm}$:
G. Duplančić, S.N., K. Passek-Kumerički,
B. Pire, L. Szymanowski, S. Wallon:
[2212.00655, 2302.12026]

Introduction

Exclusive photon-meson photoproduction

$$
\gamma(q)+N\left(p_{1}\right) \rightarrow \gamma(k)+M\left(p_{M}\right)+N^{\prime}\left(p_{2}\right)
$$

- Calculation at LO and leading twist for $M=\pi^{ \pm}, \rho_{L, T}^{0, \pm}$:
G. Duplančić, S.N., K. Passek-Kumerički,
B. Pire, L. Szymanowski, S. Wallon:
[2212.00655, 2302.12026]
- Sensitive to chiral-odd GPDs at the leading twist when $M=\rho_{T}$.

Introduction

Exclusive photon-meson photoproduction

$$
\gamma(q)+N\left(p_{1}\right) \rightarrow \gamma(k)+M\left(p_{M}\right)+N^{\prime}\left(p_{2}\right)
$$

- Calculation at LO and leading twist for $M=\pi^{ \pm}, \rho_{L, T}^{0, \pm}$:
G. Duplančić, S.N., K. Passek-Kumerički,
B. Pire, L. Szymanowski, S. Wallon: [2212.00655, 2302.12026]
- Sensitive to chiral-odd GPDs at the leading twist when $M=\rho_{T}$.
- Good statistics at various experiments, particularly at JLab.
- Small ξ limit of quark GPDs can be studied at collider experiments.

Introduction

Exclusive photon-meson photoproduction

$$
\gamma(q)+N\left(p_{1}\right) \rightarrow \gamma(k)+M\left(p_{M}\right)+N^{\prime}\left(p_{2}\right)
$$

- Calculation at LO and leading twist for $M=\pi^{ \pm}, \rho_{L, T}^{0, \pm}$:
G. Duplančić, S.N., K. Passek-Kumerički,
B. Pire, L. Szymanowski, S. Wallon: [2212.00655, 2302.12026]
- Sensitive to chiral-odd GPDs at the leading twist when $M=\rho_{T}$.
- Good statistics at various experiments, particularly at JLab.
- Small ξ limit of quark GPDs can be studied at collider experiments.
\Longrightarrow See Samuel Wallon's talk on Tuesday

Introduction

Is Collinear factorisation justified?

- Recently, factorisation has been proved for the process $\pi N \rightarrow \gamma \gamma N^{\prime}$ by J. Qiu, Z. Yu [2205.07846].
- This was extended to a wide range of $2 \rightarrow 3$ exclusive processes by J. Qiu, Z. Yu [2210.07995]

Introduction

Is Collinear factorisation justified?

- Recently, factorisation has been proved for the process $\pi N \rightarrow \gamma \gamma N^{\prime}$ by J. Qiu, Z. Yu [2205.07846].
- This was extended to a wide range of $2 \rightarrow 3$ exclusive processes by J. Qiu, Z. Yu [2210.07995]
- The proof relies on having large p_{T}, rather than large invariant mass (e.g. photon-meson pair).
- Recently, factorisation has been proved for the process $\pi N \rightarrow \gamma \gamma N^{\prime}$ by J. Qiu, Z. Yu [2205.07846].
- This was extended to a wide range of $2 \rightarrow 3$ exclusive processes by J. Qiu, Z. Yu [2210.07995]
- The proof relies on having large p_{T}, rather than large invariant mass (e.g. photon-meson pair).
- In fact, NLO computation has been performed for $\gamma N \rightarrow \gamma \gamma N^{\prime}$ by
O. Grocholski, B. Pire, P. Sznajder, L. Szymanowski, J. Wagner [2110.00048, 2204.00396]
- Also, NLO computation for $\gamma \gamma \rightarrow \pi^{+} \pi^{-}$by crossing symmetry G. Duplancic, B. Nizic: [hep-ph/0607069].

Introduction
Is Collinear factorisation justified?

- Recently, factorisation has been proved for the process $\pi N \rightarrow \gamma \gamma N^{\prime}$ by J. Qiu, Z. Yu [2205.07846].
- This was extended to a wide range of $2 \rightarrow 3$ exclusive processes by J. Qiu, Z. Yu [2210.07995]
- The proof relies on having large p_{T}, rather than large invariant mass (e.g. photon-meson pair).
- In fact, NLO computation has been performed for $\gamma N \rightarrow \gamma \gamma N^{\prime}$ by
O. Grocholski, B. Pire, P. Sznajder, L. Szymanowski, J. Wagner [2110.00048, 2204.00396]
- Also, NLO computation for $\gamma \gamma \rightarrow \pi^{+} \pi^{-}$by crossing symmetry G. Duplancic, B. Nizic: [hep-ph/0607069].

Issues with exclusive $\pi^{0} \gamma$ photoproduction...

Introduction

Gluon GPD contributions to exclusive $\pi^{0} \gamma$ photoproduction

- Because of the quantum numbers of $\pi^{0}\left(J^{P C}=0^{-+}\right)$, the exclusive photoproduction of $\pi^{0} \gamma$ is also sensitive to gluon GPD contributions.

Introduction
Gluon GPD contributions to exclusive $\pi^{0} \gamma$ photoproduction

- Because of the quantum numbers of $\pi^{0}\left(J^{P C}=0^{-+}\right)$, the exclusive photoproduction of $\pi^{0} \gamma$ is also sensitive to gluon GPD contributions.
- A total of 24 diagrams contribute in this case (compared to 20 diagrams from quark GPD contributions), with 6 groups of 4 related by symmetries ($x \rightarrow-x$ and $z \rightarrow 1-z$ separately).

Introduction
Gluon GPD contributions to exclusive $\pi^{0} \gamma$ photoproduction

- Because of the quantum numbers of $\pi^{0}\left(J^{P C}=0^{-+}\right)$, the exclusive photoproduction of $\pi^{0} \gamma$ is also sensitive to gluon GPD contributions.
- A total of 24 diagrams contribute in this case (compared to 20 diagrams from quark GPD contributions), with 6 groups of 4 related by symmetries ($x \rightarrow-x$ and $z \rightarrow 1-z$ separately).
- Diagrams amount to connecting photons to the following two topologies.

Result assuming collinear factorisation

Specific diagram

$C F \sim \frac{\operatorname{Tr}\left[p_{M} \gamma^{5} \phi_{k}\left(k+z \not p_{M}\right) \gamma^{j}\left(\phi-(x-\xi) \not p-\bar{z} \phi_{M}\right) \phi_{q}\left(-(x-\xi) \not p-\bar{z} \not p_{M}\right) \gamma^{i}\right]}{\left[2 z k p_{M}\right]\left[-2(x-\xi) q p-2 \bar{z} q p_{M}+2 \bar{z}(x-\xi) p p_{M}+i \epsilon\right]\left[2 \bar{z}(x-\xi) p p_{M}+i \epsilon\right]}$

$$
\xrightarrow{x \rightarrow \xi, \bar{z} \rightarrow 0} \propto \frac{x-\xi}{[(x-\xi)+A \bar{z}-i \epsilon][\bar{z}(x-\xi)+i \epsilon]}, \quad A \equiv \frac{q p_{M}}{q p}>0 .
$$

(Assuming p_{M} is along minus direction)

Result assuming collinear factorisation

Specific diagram

Need to dress coefficient function CF with gluon GPD $\left(\frac{H_{g}(x)}{(x-\xi+i \epsilon)(x+\xi-i \epsilon)}\right)$, and DA $(z \bar{z})$. This gives

$$
\begin{aligned}
\mathcal{A} & \sim \frac{\bar{z}(x-\xi) H_{g}(x)}{(x-\xi+i \epsilon)[(x-\xi)+A \bar{z}-i \epsilon][\bar{z}(x-\xi)+i \epsilon]} \\
& \longrightarrow \frac{H_{g}(x)}{[(x-\xi)+A \bar{z}-i \epsilon][x-\xi+i \epsilon]}
\end{aligned}
$$

Result assuming collinear factorisation

Specific diagram

Need to dress coefficient function CF with gluon GPD $\left(\frac{H_{g}(x)}{(x-\xi+i \epsilon)(x+\xi-i \epsilon)}\right)$, and DA ($z \bar{z}$). This gives

$$
\begin{aligned}
\mathcal{A} & \sim \frac{\bar{z}(x-\xi) H_{g}(x)}{(x-\xi+i \epsilon)[(x-\xi)+A \bar{z}-i \epsilon][\bar{z}(x-\xi)+i \epsilon]} \\
& \longrightarrow \frac{H_{g}(x)}{[(x-\xi)+A \bar{z}-i \epsilon][x-\xi+i \epsilon]}
\end{aligned}
$$

The integral over z and x diverges if the GPD $H_{g}(x)$ is non-vanishing at $x=\xi$:

$$
\begin{aligned}
& \int_{-1}^{1} d x \int_{0}^{1} d z \frac{1}{[(x-\xi)+A \bar{z}-i \epsilon][x-\xi+i \epsilon]} \\
& \supset \int_{-1}^{1} d x \frac{\ln (x-\xi-i \epsilon)}{[x-\xi+i \epsilon]} \quad \Longrightarrow \text { divergent imaginary part! }
\end{aligned}
$$

Result assuming collinear factorisation

Specific diagram

\Longrightarrow The "pinching" is caused by propagators D_{a} and D_{b}.

Result assuming collinear factorisation

Full Amplitude

What about the sum of diagrams?

$$
\begin{aligned}
& \begin{aligned}
& \sum \mathcal{A} \sim \frac{z \bar{z}\left(x^{2}-\xi^{2}\right)\left[-\alpha\left[\left(x^{2}-\xi^{2}\right)^{2}(1-2 z \bar{z})+8 x^{2} \xi^{2} z \bar{z}\right]-\left(1+\alpha^{2}\right) z \bar{z}\left(x^{4}-\xi^{4}\right)\right] H_{g}(x)}{z \bar{z}[x-\xi+i \epsilon]^{2}[\bar{z}(x+\xi)-\alpha z(x-\xi)-i \epsilon][z(x-\xi)+\alpha \bar{z}(x+\xi)-i \epsilon]} \\
& \times \frac{1}{[x+\xi-i \epsilon]^{2}[\bar{z}(x-\xi)+\alpha z(x+\xi)-i \epsilon][z(x+\xi)-\alpha \bar{z}(x-\xi)-i \epsilon]} \\
& \xrightarrow{x \rightarrow \xi, \bar{z} \rightarrow 0} \propto \frac{\left[-\alpha\left[\left(x^{2}-\xi^{2}\right)^{2}(1-2 z \bar{z})+8 x^{2} \xi^{2} z \bar{z}\right]-\left(1+\alpha^{2}\right) z \bar{z}\left(x^{4}-\xi^{4}\right)\right] H_{g}(x)}{[x-\xi+i \epsilon][2 \xi \bar{z}-\alpha(x-\xi)-i \epsilon][(x-\xi)+2 \xi \alpha \bar{z}-i \epsilon]}
\end{aligned}
\end{aligned}
$$

Result assuming collinear factorisation

Full Amplitude

What about the sum of diagrams?

$$
\begin{aligned}
& \sum \mathcal{A} \sim \frac{z \bar{z}\left(x^{2}-\xi^{2}\right)\left[-\alpha\left[\left(x^{2}-\xi^{2}\right)^{2}(1-2 z \bar{z})+8 x^{2} \xi^{2} z \bar{z}\right]-\left(1+\alpha^{2}\right) z \bar{z}\left(x^{4}-\xi^{4}\right)\right] H_{g}(x)}{z \bar{z}[x-\xi+i \epsilon]^{2}[\bar{z}(x+\xi)-\alpha z(x-\xi)-i \epsilon][z(x-\xi)+\alpha \bar{z}(x+\xi)-i \epsilon]} \\
& \times \frac{1}{[x+\xi-i \epsilon]^{2}[\bar{z}(x-\xi)+\alpha z(x+\xi)-i \epsilon][z(x+\xi)-\alpha \bar{z}(x-\xi)-i \epsilon]} \\
& \xrightarrow{x \rightarrow \xi, \bar{z} \rightarrow 0} \propto \frac{\left.\left[-\alpha\left[\left(x^{2}-\xi^{2}\right)^{2}(1-2 z \bar{z})+8 x^{2} \xi^{2} z \bar{z}\right]\right]-\left(1+\alpha^{2}\right) z \bar{z}\left(x^{4}-\xi^{4}\right)\right] H_{g}(x)}{[x-\xi+i \epsilon][2 \xi \bar{z}-\alpha(x-\xi)-i \epsilon][(x-\xi)+2 \xi \alpha \bar{z}-i \epsilon]}
\end{aligned}
$$

Full amplitude (anti)-symmetric in $x \rightarrow-x$ and $z \rightarrow \bar{z}$ for (anti)-symmetric GPD. (only symmetric result shown above)
\Longrightarrow divergence survives, and actually adds up.

Result assuming collinear factorisation

Singularity structure of the full amplitude

'Phase Space' for amplitude

Result assuming collinear factorisation
Singularity structure of the full amplitude
'Phase Space' for amplitude

$$
\xi=0.5
$$

- Unfortunately, no cancellations between the 4 corners.

Result assuming collinear factorisation

Singularity structure of the full amplitude

'Phase Space' for amplitude

$$
\xi=0.5
$$

- Unfortunately, no cancellations between the 4 corners.
- In $\gamma \gamma \rightarrow M M$, only ERBL region exists, no poles are crossed, and endpoint contributions are suppressed by DAs.

Result assuming collinear factorisation

Singularity structure of the full amplitude

'Phase Space' for amplitude

$$
\xi=0.5
$$

- Unfortunately, no cancellations between the 4 corners.
- In $\gamma \gamma \rightarrow M M$, only ERBL region exists, no poles are crossed, and endpoint contributions are suppressed by DAs.
- Indication of problem with naive collinear factorisation? At twist-2??

Result assuming collinear factorisation

Singularity structure of the full amplitude

'Phase Space' for amplitude

$$
\xi=0.5
$$

- Unfortunately, no cancellations between the 4 corners.
- In $\gamma \gamma \rightarrow M M$, only ERBL region exists, no poles are crossed, and endpoint contributions are suppressed by DAs.
- Indication of problem with naive collinear factorisation? At twist-2??
- Can this divergence be understood from a theoretical point of view?

Result assuming collinear factorisation

Singularity structure of the full amplitude

'Phase Space' for amplitude

$\xi=0.5$

- Unfortunately, no cancellations between the 4 corners.
- In $\gamma \gamma \rightarrow$ MM, only ERBL region exists, no poles are crossed, and endpoint contributions are suppressed by DAs.
- Indication of problem with naive collinear factorisation?
At twist-2??
- Can this divergence be understood from a theoretical point of view?
YES! \Longrightarrow [S. N., J. Schönleber,
L. Szymanowski, S. Wallon: 2311.09146]
- How to obtain the dominant contribution of an amplitude (in QCD) in a certain specific kinematics (e. g. collinear)?
\Longrightarrow Libby-Sterman power counting rule [Phys.Rev.D 18 (1978) 3252; Phys.Rev.D 18 (1978) 4737]

Reduced diagram analysis

- How to obtain the dominant contribution of an amplitude (in QCD) in a certain specific kinematics (e. g. collinear)?
\Longrightarrow Libby-Sterman power counting rule [Phys.Rev.D 18 (1978) 3252;
Phys.Rev.D 18 (1978) 4737]
- Extensively used in factorisation proofs [Collins: Foundations of perturbative QCD]
- Basic idea is to identify regions of loop momenta of partons (also number of partons), which gives the dominant contribution to the full amplitude.
- How to obtain the dominant contribution of an amplitude (in QCD) in a certain specific kinematics (e. g. collinear)?
\Longrightarrow Libby-Sterman power counting rule [Phys.Rev.D 18 (1978) 3252; Phys.Rev.D 18 (1978) 4737]
- Extensively used in factorisation proofs [Collins: Foundations of perturbative QCD]
- Basic idea is to identify regions of loop momenta of partons (also number of partons), which gives the dominant contribution to the full amplitude.
- Collect all contributions to the smallest α :

$$
\mathcal{A}=Q^{\beta} \sum_{\alpha} f_{\alpha} \lambda^{\alpha}, \quad \lambda=\frac{\Lambda_{\mathrm{QCD}}, m_{\pi}, m_{N}}{Q} \ll 1
$$

Reduced diagram analysis

Classic Collinear pinch

In both of the above cases, the power counting is [S. N., J. Schönleber,
L. Szymanowski, S. Wallon: 2311.09146]:

$$
\mathcal{A} \sim Q^{-1} \lambda^{\alpha}, \quad \lambda=\frac{\Lambda_{\mathrm{QCD}}, m_{\pi}, m_{N}}{Q} \ll 1, \quad \alpha=1
$$

Reduced diagram analysis

Classic Collinear pinch

In both of the above cases, the power counting is [S. N., J. Schönleber,
L. Szymanowski, S. Wallon: 2311.09146]:

$$
\mathcal{A} \sim Q^{-1} \lambda^{\alpha}, \quad \lambda=\frac{\Lambda_{\mathrm{QCD}}, m_{\pi}, m_{N}}{Q} \ll 1, \quad \alpha=1
$$

Collinear factorisation at all orders and leading power provided:

- the above (classic) collinear pinch diagrams are the only ones contributing to the leading power of $\alpha=1$
- the soft factor S 'cancels'

Reduced diagram analysis
Other leading pinch surfaces?

Divergence obtained when $(x-\xi) p$ and $(1-z) p_{M}$ lines become soft:
$\Longrightarrow D_{a}$ becomes soft and D_{b} becomes collinear with respect to q.

Reduced diagram analysis
Other leading pinch surfaces?

Divergence obtained when $(x-\xi) p$ and $(1-z) p_{M}$ lines become soft:
$\Longrightarrow D_{a}$ becomes soft and D_{b} becomes collinear with respect to q.
Is there a leading pinch diagram that corresponds to this region?
Yes!

Reduced diagram analysis

Other leading pinch surfaces?

Reduced diagram analysis

Other leading pinch surfaces?

\Longrightarrow power counting is the same as the collinear region!

Reduced diagram analysis
Other leading pinch surfaces?

\Longrightarrow power counting is the same as the collinear region!
Note: Corresponding reduced diagram for quark GPD case is power suppressed.

What exactly does the pinch surface correspond to?

- Use Sudakov basis $(+,-, \perp)$:

Collinear $\quad k \sim Q\left(1, \lambda^{2}, \lambda\right) \quad\left(\right.$ or $\left.\quad k \sim Q\left(\lambda^{2}, 1, \lambda\right)\right)$

What exactly does the pinch surface correspond to?

- Use Sudakov basis $(+,-, \perp)$:

$$
\text { Collinear } \quad k \sim Q\left(1, \lambda^{2}, \lambda\right) \quad\left(\text { or } \quad k \sim Q\left(\lambda^{2}, 1, \lambda\right)\right)
$$

- Need to distinguish between ultrasoft, soft and Glauber gluons:

Ultrasoft $\quad k \sim Q\left(\lambda^{2}, \lambda^{2}, \lambda^{2}\right)$
Soft $\quad k \sim Q(\lambda, \lambda, \lambda)$
Glauber $\quad k \sim Q\left(\lambda^{2}, \lambda^{2}, \lambda\right) \quad$ (or similar with $\quad\left|k_{\perp}^{2}\right| \gg k^{+} k^{-}$)

What exactly does the pinch surface correspond to?

- Use Sudakov basis $(+,-, \perp)$:

$$
\text { Collinear } \quad k \sim Q\left(1, \lambda^{2}, \lambda\right) \quad\left(\text { or } \quad k \sim Q\left(\lambda^{2}, 1, \lambda\right)\right)
$$

- Need to distinguish between ultrasoft, soft and Glauber gluons:

$$
\begin{array}{ll}
\text { Ultrasoft } & k \sim Q\left(\lambda^{2}, \lambda^{2}, \lambda^{2}\right) \\
\text { Soft } & k \sim Q(\lambda, \lambda, \lambda) \\
\text { Glauber } & \left.k \sim Q\left(\lambda^{2}, \lambda^{2}, \lambda\right) \quad \text { (or similar with } \quad\left|k_{\perp}^{2}\right| \gg k^{+} k^{-}\right)
\end{array}
$$

- Libby-Sterman power counting formula strictly applies for ultrasoft gluons only.

What exactly does the pinch surface correspond to?

- Use Sudakov basis $(+,-, \perp)$:

$$
\text { Collinear } \quad k \sim Q\left(1, \lambda^{2}, \lambda\right) \quad\left(\text { or } \quad k \sim Q\left(\lambda^{2}, 1, \lambda\right)\right)
$$

- Need to distinguish between ultrasoft, soft and Glauber gluons:

$$
\begin{array}{ll}
\text { Ultrasoft } & k \sim Q\left(\lambda^{2}, \lambda^{2}, \lambda^{2}\right) \\
\text { Soft } & k \sim Q(\lambda, \lambda, \lambda) \\
\text { Glauber } & \left.k \sim Q\left(\lambda^{2}, \lambda^{2}, \lambda\right) \quad \text { (or similar with } \quad\left|k_{\perp}^{2}\right| \gg k^{+} k^{-}\right)
\end{array}
$$

- Libby-Sterman power counting formula strictly applies for ultrasoft gluons only.
- However, these are typically eliminated by the use of Ward identities.

What exactly does the pinch surface correspond to?

- Use Sudakov basis $(+,-, \perp)$:

$$
\text { Collinear } \quad k \sim Q\left(1, \lambda^{2}, \lambda\right) \quad\left(\text { or } \quad k \sim Q\left(\lambda^{2}, 1, \lambda\right)\right)
$$

- Need to distinguish between ultrasoft, soft and Glauber gluons:

Ultrasoft	$k \sim Q\left(\lambda^{2}, \lambda^{2}, \lambda^{2}\right)$
Soft	$k \sim Q(\lambda, \lambda, \lambda)$
Glauber	$k \sim Q\left(\lambda^{2}, \lambda^{2}, \lambda\right) \quad\left(\right.$ or similar with $\left.\quad\left\|k_{\perp}^{2}\right\| \gg k^{+} k^{-}\right)$

- Libby-Sterman power counting formula strictly applies for ultrasoft gluons only.
- However, these are typically eliminated by the use of Ward identities.
- Glauber gluons cannot be eliminated/suppressed by the use of Ward identities.

What exactly does the pinch surface correspond to?

- Use Sudakov basis $(+,-, \perp)$:

$$
\text { Collinear } \quad k \sim Q\left(1, \lambda^{2}, \lambda\right) \quad\left(\text { or } \quad k \sim Q\left(\lambda^{2}, 1, \lambda\right)\right)
$$

- Need to distinguish between ultrasoft, soft and Glauber gluons:

$$
\begin{array}{ll}
\text { Ultrasoft } & k \sim Q\left(\lambda^{2}, \lambda^{2}, \lambda^{2}\right) \\
\text { Soft } & k \sim Q(\lambda, \lambda, \lambda) \\
\text { Glauber } & \left.k \sim Q\left(\lambda^{2}, \lambda^{2}, \lambda\right) \quad \text { (or similar with } \quad\left|k_{\perp}^{2}\right| \gg k^{+} k^{-}\right)
\end{array}
$$

- Libby-Sterman power counting formula strictly applies for ultrasoft gluons only.
- However, these are typically eliminated by the use of Ward identities.
- Glauber gluons cannot be eliminated/suppressed by the use of Ward identities.
- Key Question: Is there a Glauber pinch that contributes at leading power?

Glauber pinch

(Notation: $(+,-, \perp)$)
$p_{N}, p_{N^{\prime}}, \Delta \sim Q\left(1, \lambda^{2}, \lambda\right), \quad \Delta^{+}<0$.
$p_{\pi} \sim Q\left(\lambda^{2}, 1, \lambda\right)$
$q, k \sim Q(1,1,1), \quad q^{2}, k^{2} \sim \lambda^{2} Q^{2}$
[Loop] Glauber $k_{g} \sim Q\left(\lambda, \lambda^{2}, \lambda\right)$
[Loop] Soft $r \sim Q(\lambda, \lambda, \lambda)$

Glauber pinch

Glauber gluon, since $k_{g}^{+} k_{g}^{-} \ll\left|k_{g}^{\perp}\right|^{2}$

Glauber pinch

Glauber gluon, since $k_{g}^{+} k_{g}^{-} \ll\left|k_{g}^{\perp}\right|^{2}$
r^{+}pinch:

$$
\begin{aligned}
& r^{2}+i 0=r^{+} r^{-}-\left|r_{\perp}\right|^{2}+i 0 \\
& \Longrightarrow r^{+}=\mathcal{O}(\lambda)-\operatorname{sgn}\left(r^{-}\right) i 0
\end{aligned}
$$

$$
p_{N^{\prime}}\left(p_{\pi}-r\right)^{2}+i 0=-2 p_{\pi}^{-} r^{+}+\mathcal{O}\left(\lambda^{2}\right)+i 0
$$

$$
\Longrightarrow r^{+}=\mathcal{O}\left(\lambda^{2}\right)+i 0
$$

(Notation: $(+,-, \perp)$)

$$
p_{N}, p_{N^{\prime}}, \Delta \sim Q\left(1, \lambda^{2}, \lambda\right), \quad \Delta^{+}<0
$$

$p_{\pi} \sim Q\left(\lambda^{2}, 1, \lambda\right)$
$q, k \sim Q(1,1,1), \quad q^{2}, k^{2} \sim \lambda^{2} Q^{2}$
[Loop] Glauber $k_{g} \sim Q\left(\lambda, \lambda^{2}, \lambda\right)$
[Loop] Soft $r \sim Q(\lambda, \lambda, \lambda)$

Glauber pinch

(Notation: $(+,-, \perp)$)
$p_{N}, p_{N^{\prime}}, \Delta \sim Q\left(1, \lambda^{2}, \lambda\right), \quad \Delta^{+}<0$.
$p_{\pi} \sim Q\left(\lambda^{2}, 1, \lambda\right)$
$q, k \sim Q(1,1,1), \quad q^{2}, k^{2} \sim \lambda^{2} Q^{2}$
k_{g}^{-}pinch:
[Loop] Glauber $k_{g} \sim Q\left(\lambda, \lambda^{2}, \lambda\right)$
[Loop] Soft $r \sim Q(\lambda, \lambda, \lambda)$

$$
\begin{aligned}
& \left(k_{g}-\Delta\right)^{2}+i 0=-2 \Delta^{+} k_{g}^{-}+\mathcal{O}\left(\lambda^{2}\right)+i 0 \\
& \Longrightarrow k_{g}^{-}=\mathcal{O}\left(\lambda^{2}\right)-i 0 \\
& \left(p_{N^{\prime}}-k_{g}\right)^{2}+i 0=-2 p_{N^{\prime}}^{+} k_{g}^{-}+\mathcal{O}\left(\lambda^{2}\right)+i 0 \\
& \Longrightarrow k_{g}^{-}=\mathcal{O}\left(\lambda^{2}\right)+i 0
\end{aligned}
$$

Glauber pinch

r^{-}pinch:

$$
\begin{aligned}
& \left(q-r-k_{g}\right)^{2}+i 0 \\
& =-2 q^{+} r^{-}-2 q^{-} k_{g}^{+}+\mathcal{O}(\lambda)+i 0 \\
& \Longrightarrow r^{-}=\mathcal{O}(\lambda)+i 0 \\
& \left(r+k_{g}\right)^{2}+i 0=2 k_{g}^{+} r^{-}+\mathcal{O}\left(\lambda^{2}\right)+i 0 \\
& \Longrightarrow r^{-}=\mathcal{O}(\lambda)-\operatorname{sgn}\left(k_{g}^{+}\right) i 0
\end{aligned}
$$

Glauber pinch

k_{g}^{+}pinch:

$$
\begin{aligned}
& \left(q-r-k_{g}\right)^{2}+i 0 \\
& =-2 q^{+} r^{-}-2 q^{-} k_{g}^{+}+\mathcal{O}(\lambda)+i 0 \\
& \Longrightarrow k_{g}^{+}=\mathcal{O}(\lambda)+i 0 \\
& \left(r+k_{g}\right)^{2}+i 0=2 k_{g}^{+} r^{-}+\mathcal{O}\left(\lambda^{2}\right)+i 0 \\
& \Longrightarrow k_{g}^{+}=\mathcal{O}(\lambda)-\operatorname{sgn}\left(r^{-}\right) i 0
\end{aligned}
$$

r^{-}pinch:

$$
\begin{aligned}
& \left(q-r-k_{g}\right)^{2}+i 0 \\
& =-2 q^{+} r^{-}-2 q^{-} k_{g}^{+}+\mathcal{O}(\lambda)+i 0 \\
& \Longrightarrow r^{-}=\mathcal{O}(\lambda)+i 0 \\
& \left(r+k_{g}\right)^{2}+i 0=2 k_{g}^{+} r^{-}+\mathcal{O}\left(\lambda^{2}\right)+i 0 \\
& \Longrightarrow r^{-}=\mathcal{O}(\lambda)-\operatorname{sgn}\left(k_{g}^{+}\right) i 0
\end{aligned}
$$

Pinch when $k_{g}^{+}>0 \Longrightarrow$ DGLAP region

Glauber pinch

r^{-}pinch:

$$
\begin{aligned}
& \left(q-r-k_{g}\right)^{2}+i 0 \\
& =-2 q^{+} r^{-}-2 q^{-} k_{g}^{+}+\mathcal{O}(\lambda)+i 0 \\
& \Longrightarrow r^{-}=\mathcal{O}(\lambda)+i 0 \\
& \left(r+k_{g}\right)^{2}+i 0=2 k_{g}^{+} r^{-}+\mathcal{O}\left(\lambda^{2}\right)+i 0 \\
& \Longrightarrow r^{-}=\mathcal{O}(\lambda)-\operatorname{sgn}\left(k_{g}^{+}\right) i 0
\end{aligned}
$$

Pinch when $k_{g}^{+}>0 \Longrightarrow$ DGLAP region

Glauber pinch is leading

Explicit 2-loop analysis shows that the Glauber pinch demonstrated previously is leading, i.e. it scales as λ^{α}, with $\alpha=1$.

Glauber pinch

Exclusive double diffractive processes

Very similar to the exclusive double diffractive process, where the Glauber gluon is pinched between the two pairs of incoming and outgoing collinear hadrons.

$$
p\left(p_{N_{1}}\right)+p\left(p_{N_{2}}\right) \longrightarrow p\left(p_{N_{1}^{\prime}}\right)+p\left(p_{N_{2}^{\prime}}\right)+\gamma\left(k_{1}\right)+\gamma\left(k_{2}\right)
$$

Glauber pinch

Exclusive double diffractive processes

Very similar to the exclusive double diffractive process, where the Glauber gluon is pinched between the two pairs of incoming and outgoing collinear hadrons.

$$
p\left(p_{N_{1}}\right)+p\left(p_{N_{2}}\right) \longrightarrow p\left(p_{N_{1}^{\prime}}\right)+p\left(p_{N_{2}^{\prime}}\right)+\gamma\left(k_{1}\right)+\gamma\left(k_{2}\right)
$$

Here, the Glauber pinch corresponds to $k_{g} \sim\left(\lambda^{2}, \lambda^{2}, \lambda\right)$
Instead, in our case, the Glauber gluon (which corresponds to one of the active partons) is pinched between a pair of collinear hadrons, and a soft line joining the outgoing pion and the incoming photon.

Conclusions

- Collinear factorisation for the exclusive $\pi^{0} \gamma$ photoproduction fails due to the gluon exchange channel.

Conclusions

- Collinear factorisation for the exclusive $\pi^{0} \gamma$ photoproduction fails due to the gluon exchange channel.
- The same thing happens for the exclusive process $\pi^{0} N \rightarrow N \gamma \gamma$.

Conclusions

- Collinear factorisation for the exclusive $\pi^{0} \gamma$ photoproduction fails due to the gluon exchange channel.
- The same thing happens for the exclusive process $\pi^{0} N \rightarrow N \gamma \gamma$.
- Channels where 2-gluon exchanges are forbidden ($\pi^{ \pm}$and $\rho^{0, \pm}$) are safe from the effects discussed here.

Conclusions

- Collinear factorisation for the exclusive $\pi^{0} \gamma$ photoproduction fails due to the gluon exchange channel.
- The same thing happens for the exclusive process $\pi^{0} N \rightarrow N \gamma \gamma$.
- Channels where 2-gluon exchanges are forbidden ($\pi^{ \pm}$and $\rho^{0, \pm}$) are safe from the effects discussed here.
- The existence of the Glauber pinch can be also demonstrated using the generalised Landau conditions and the Coleman-Norton picture [ongoing]

Conclusions

- Collinear factorisation for the exclusive $\pi^{0} \gamma$ photoproduction fails due to the gluon exchange channel.
- The same thing happens for the exclusive process $\pi^{0} N \rightarrow N \gamma \gamma$.
- Channels where 2-gluon exchanges are forbidden ($\pi^{ \pm}$and $\rho^{0, \pm}$) are safe from the effects discussed here.
- The existence of the Glauber pinch can be also demonstrated using the generalised Landau conditions and the Coleman-Norton picture [ongoing]
- Compute $\gamma N \rightarrow \gamma \pi^{0} N$ in high-energy (k_{T}) factorisation [ongoing]

Backup

BACKUP SLIDES

Definition

Lightcone coordinates

Very useful Sudakov decomposition of a generic 4-vector v in lightcone directions n_{+}and n_{-}:

$$
v^{\mu}=v^{+} n_{+}^{\mu}+v^{-} n_{-}^{\mu}+v_{\perp}^{\mu}
$$

with

$$
\begin{aligned}
n_{+}^{2}=n_{-}^{2} & =0 \\
n_{+} \cdot n_{-} & =1 \\
v^{ \pm} & =\frac{v^{0} \pm v^{3}}{\sqrt{2}} \\
v^{2} & =2 v^{+} v^{-}+v_{\perp}^{2}
\end{aligned}
$$

In other words, $n_{+}^{\mu}\left(n_{-}^{\mu}\right)$ defines a lightlike 4-vector with spatial components purely in the positive (negative) z-direction

Factorisation breaking effects in $\pi^{0} \gamma$ photoproduction

Gluon GPD contributions

$$
\begin{aligned}
D_{a} & =\left((x-\xi) p+\bar{z} p_{M}\right)^{2}+i \epsilon \\
& =s \bar{\alpha} \bar{z}[x-\xi+i \epsilon], \\
D_{b} & =\left(k+z p_{M}-(x+\xi) p\right)^{2}+i \epsilon \\
& =-s[z(x-\xi-i \epsilon)+\alpha \bar{z}(x+\xi-i \epsilon)], \\
D_{c} & =\left(z p_{M}-(x+\xi) p\right)^{2}+i \epsilon \\
& =-s \bar{\alpha} z[x+\xi-i \epsilon]
\end{aligned}
$$

\Longrightarrow pinching of poles in the propagators $\left(D_{a}\right.$ and $\left.D_{b}\right)$ in the limit of $z \rightarrow 1$

