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f(z) = F(z,§,1)

x ~ parton momentum fraction, £ ~ longitudinal momentum transfer,

t = A? ~ momentum transfer squared

= GPDs generalize the well known PDFs to encode full 3 dimensional information on the quarks and gluons within
hadrons

k— A E+ A

P—-A P+ A
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Polarization of the hadron and its parton constituents connects GPDs to the distribution of angular momentum
within hadrons (X. i 1997)

= Ji sum rule 1

Ji=; [ doolbi,) + B(z,6)
0
Related via a Fourier transform to the impact parameter distribution of partons (M. Burkardt 2003)

d2A_L —AA ¢ s oz, ~1/Q -
plarrs) = [ ke 4T H(,0,40)

Related to bulk properties of hadron states encoded in form factors

/ dz oHi(z, €, 1) = As(t) + (26)2Ci(0), / dz 2E;(z, £,t) = Bi(t) — (26)2Ci(t)
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GUMP PROGRAM: MOMENT PARAMETERIZATION

= Parameterize GPDs by directly parameterizing their conformal moments and resumming

with a Mellin-Barnes integral
c+1i00

_1 . pi(=,¢) D. Mueller and A. Schafer 2006
F(:I:,ﬁ,t)—% / djsin(ﬂ[j—l—l])]:j(g’t) (D. Mueller and A. Schafer )

c—100

=  Expansion based on eigenfunctions of evolution — Gegenbauer polynomials
. 1 2T(2 + )
—1)7pj(x, ) = €777 =
Pl N

2\
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()] (3)
conformal wave 1 i )
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GUMP PROGRAM: MOMENT PARAMETERIZATION

Conformal moment parameterization has nice features for fitting GPDs

= Can analytically calculate convolutions in scattering amplitudes — just one Mellin-Barnes integral to compute

Simple and fast evolution implementation — conformal moments are multiplicatively renormalized at LO

= Follows from using eigenfunctions of evolution kernel

" Polynomiality condition (X. Ji 1998) automatically enforced on conformal moments
1

n
Theory constraints can  F} ,,(§,1) = /da? "1 (x,€,t) = Z §sz',n,k(t)
be encoded directly in i k=0, even
the moment l

parameterization!
j+1
Fij&:t)= Y € Fi;it)
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FLEXIBLE MOMENT PARAMETERIZATION

= QOur starting point is a relatively simple model for the conformal moments

= Parameterize each GPD moment with five parameters

. ] +1— a;
Fiio=N;B(1+1—0a;,1+3;)- t — p—blt|
Euler Beta 4 ,
Function Regge trajectory Oé(t) —a+at

= Take each moment to be a power series in skewness — polynomiality condition

F,; =F;;o(t) + £?ReF;  o(t) + £*Rea F; i o(2)...
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NON-ZERO SKEWNESS GLOBAL FIT

= Even with constraints, lots of parameters!
= Very high dimensional space to navigate for best fit
" Very computationally demanding to do error propagation

=  We employ a sequential fit, starting with forward (PDF, t-dependent PDF) constraints for each GPD species then
apply the off-forward constraints from DVCS data

Semi-forward

EEEE

/
* JAM (2022) PDF global analysis results DVCS measurements from

* Globally extracted electromagnetic form factors (Z.Ye et al JLab (CLAS 2019 & 202

2018) Hall A 2018 & 2022) and April 10, 2024 :
e Lattice GPDs (Alexandrou et al 2020) and form factors HERA (H1 2010)

(Alexandrou et al 2022)



NON-ZERO SKEWNESS GLOBAL FIT

= Total y?/dof is approximately 1.4

=  Some agreement with both JLAB
and HI data

®  Gluon GPDs not well constrained
at non-zero skewness

= Only contribute to DVCS through
evolution at LO

= Error propagation is not yet
implemented

" Very computationally expensive
with so many parameters!
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GLUON SENSITIVE PROCESSES

= DVCS at LO is only sensitive to gluon GPDs through scale evolution
= Using Deeply Virtual Meson Production (DVMP) gives a direct probe of gluons at LO
p, J/ ¥, ete. p, J/¥, ete.

* ,*
Y 74

PM PM

= Light vector mesons have similar sensitivity to quarks and gluons

= KM framework applied to produce simultaneous fits of DVCS and DVMP for p°® meson
production with data from HERA (arXiv:2310.13837)

= Add heavy vector meson to obtain better constraints on gluon GPDs — use J /1
production!
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https://arxiv.org/abs/2310.13837

DEEPLY VIRTUAL J/ip PRODUCTION (DV /vy P)

®  Charm quark contribution for nucleon target is negligible — direct probe of gluons

= Complementary with GUMP work on quark GPDs, but mostly sensitive to small-xg region whereas JLab data
combined with HERA gives better constraint at moderate xp

= Caveat: mass of the J /1) gives significant power corrections to collinear factorization

M3/¢/Q2 ~ 9/20 — corrections of order 1/2

max bin

" Need to take heavy mass corrections into account — non-relativistic (NR) QCD!
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NON-RELATIVISTIC MODEL APPROACH

= Including the mass corrections means we have a hard scale even as Q% — 0, so we can potentially include
photoproduction data in future fits!

= The NRQCD treatment includes both photon polarizations — eliminates largest source of uncertainty in data at
the cost of model dependence

R . dO'L L Q2
M2
= dototal = (E + é]é¢> doy, € ~ longitudinal to
transverse photon

flux ratio
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IMPLEMENTING NR J /1y PRODUCTION IN GUMP

"  We can make a hybrid scheme by combining the minimal NRQCD corrections with collinear factorization NLO
hard scattering and universal NLO GPD evolution

1
/ O4) b : . .
-AHyb X 1 J/i/) d asymptOtZC(z) /d.’B C;(a:,f,z)Fl(as,g,t)
1= flavors g Z(l a Z) 1

= Passing to moment space we write ' We set the factorization and
[{O1) ] renormalization scales equal
Anyb. X mw Z / djé=I~ 1lz—|—tan(2)] toQ2+M]2/¢
1=flavors,g ._"; -

C" LOEz L0 (Q?) + Ci,NLOE;,LO(Qz) n Ci,LOE;l_,NLO(Q2)] ]-'}(5, )

April 10, 2024 3



GLUON GPD FIT INPUTS

"  We use |7 t-dependent cross section points from HI (2006) data
= < (Q?>inrange 7.0 — 22.4 GeV?, xp in range 9x10™* — 6x1073,and |¢| in range 0.04 — 0.64 GeV?

= The data has negligible sensitivity to the GPD E, so we only fit parameters coming from the GPD H: b9 and Rz as well as

the DA normalization parameter N 24

= Given the small values of xz, we redo the fit of our forward gluon PDF parameters in a simultaneous fit, using 9
points from the JAM22 global analysis with Q% = 4 GeV? and xz = 10~* — 1073 to constrain N9, a9, §9

® Limited number of points constraining forward limit since we have a limited number of off-forward data points
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GLUON GPD PRELIMINARY FIT RESULTS

= Minimizing with Minuit2 gives y%/dof = 0.98 and the following best-fit parameters

= Only statistical uncertainties from Minuit2 right now, full error propagation left for future work

Best-Fit Parameters

Parameter | Best-Fit Value | Statistical Uncertainty

N9 1.83 0.21 Note the large uncertainty in
a9 1.097 0.015 B9 - expected from using
39 10 6 small x5 PDFs but also
correlation with normalization
Rg2 -0.14 0.06 factors through
b9 1.80 0.12 B(j+1—a,1+p3)
NP 1.08 0.12
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GLUON GPD PRELIMINARY FIT RESULTS

_ *\ 4 Q% = 8.9 GeV?
= For Q% ~ sz/w or larger our hybrid < - N
scheme describes the data relatively well GO j
E
= The xg-dependence here crucially relies 8 1014 — t=-0.056UMP
. . 5 1 —— t=-0.19 GUMP
on the large logarithms entering the NLO © — t=-0.64 GUMP
corrections in our framework Z + ¢ t=005H]
_ ¢ t=-0.19H1
_ % ¢ t=-0.64H1
0.001 0.002 0.003 0.004 0.005

X
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GLUON GPD PRELIMINARY FIT RESULTS

xp = 1.3x1073 — 3.2x1073

— Q72 =17.0 GUMP
— Q72 =22.4 GUMP

102 1
: 2 : 1 ¢ ¢ Q*2=7H1
= Going to lower Q“ we start to see discrepancy ] ¢ Q~2=224H1
with the data '
= Lower Q2 brings in higher twist effects, same issue %
for DVCS 3 107-
= Lower sz/w/Qz enhances power corrections which g
we have dropped in the NLO terms
100': +

0.1 0.2 0.3 0.4 0.5 0.6 0.7
It] (GeV?)
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FUTURE IMPROVEMENTS/ADDITIONS FOR GLUONS IN GUMP

= Simultaneous fit with DVp°P data from HERA

= Further analysis of fit results
= Uncertainty from renormalization/factorization scale setting
= Skewness ratio H(x,x,0)/H(x,0,0)

= Conversion of NLO mass corrections to moment space
®  Can add photoproduction data to fits

= More sophisticated moment ansatz

" Inclusion of lattice calculations and moderate xp experimental data requires more complicated ansatz

= Full DVCS and DVMP global analysis with NLO correctios

April 10, 2024 I8



FUTURE ADDITIONS TO GUMP

=  Full uncertainty propagation
=  Add threshold J /1 production — potentially constrain D-term/DA-terms
= |mplement t-integrated cross sections

=  Add quark flavors and implement ¢ electroproduction

= Could examine N¢ dependence — so far just u and d quarks

= Add other processes like TCS or recently proposed SDHEP (Qiu andYu 2022-2023)
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CONCLUSIONS

= Fit DV J /i P data from H|I using gluon GPD H parameters in hybrid collinear-NRQCD factorization
= Further analysis of fits and DVp°P fits in progress

= Several directions for future improvements available — both for gluon sector and GUMP overall

April 10, 2024 20



BACKUP SLIDES




ANALYTIC CONTINUATION OF MOMENTS

= Gegenbauer polynomials are only defined in the DA-like, only give a formal sum for the full GPD

= Analytic continuation to all values of x/¢ and complex values of conformal spin j yields two bases for the DA-like
and PDF-like regions and allows for reconstruction of GPD across all (x, §)

PDF

27 L(5/2 4+ 7)€
(1/2)T(1+J)

(1+z/€) o Fy (—1 =29 +2,2 fﬂ>

p;i(lz| £&,¢) = 2

7 : : . . 2
. pj(x>§,§):Sln(ﬂ[;?r+1])x—j—12Fl (]-i—l Jj+2 5/2 4 5 %)

2 % 2 °
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FIRST STEP TOWARD GLOBAL GPD ANALYSIS

®  The number of parameters needed for modelling all the species of GPD grows very quickly

"  We impose extra constraints for simplicity

GPDs species and flavors | Fully parameterized | GPDs linked to Pz(())}r)l(s)tr;inotréal

H,, and quV (%4

E,, and Euv v

Hy, and ﬁdv (%4

Eg, and Edv X Ey, and Euv RdEV/E
Hy and Hy v
By and By x Hy and fy RE/E
Hjand H 7 v
Ejand Ej; X Hjand H; RsEeéE
H, and H g v
E, and E, X H, and H, Rsb;éﬁ
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SEMI-FORWARD INPUTS

= JAM (2022) PDF global analysis results

" Full global analysis should in principle fit to PDF sensitive data directly, but here we fit to JAM results

® Limited number of points taken to avoid need for more sophisticated forward limit
" Globally extracted electromagnetic form factors (Z.Ye et al 2018)

= Lattice GPDs (Alexandrou et al 2020) and form factors (Alexandrou et al 2022)

" ¥, t-dependent GPDs (semi-forward limit)
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OFF-FORWARD INPUTS

= DVCS measurements from JLab (CLAS 2019 & 2021, HallA 2018 & 2022) and HERA (H/ 2010)
= Only using t-dependent cross sections due to practical limitations
®  Far more points from JLab data than from HERA from ¢-dependence and both UU and LU polarization channels

= Off-forward lattice GPDs not used in fitting, but can supply crucial constraints for future work!
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EXTRACTED GPDS

= GPDs are mostly constrained on the ¢ = x line and in the DGLAP region [¢| <
| x|
= ERBL region shows large oscillations which are characteristic of the Gegenbauer

polynomials used in the moment expansion
GPDs Hy at & = 1/3 and — = 0.69 GeV”

|||||||||||||||||||||||||||||

— Hu
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NON-RELATIVISTIC MODEL APPROACH

= Encoding the J /i formation into NR matrix elements

8ma% f3/¢ IR 8maZ s (O1) /4

+,-1 —
LY = eter] = 27 me 27 2
= Maintain the form of the factorization theorem for the process — still sensitive to
leading twist GPDs (D.Y. Ivanov et al 2004) —— .t least to NLO in
pQCD!

Acollinear ™ / dz/da:CI( &) )Fg(w 3 )(I)(Z) — ANR ™~ V Jw /d$C2 513 &, mc) Fg(x f,t)

—1 hard scattering term hard scattering term
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IMPLEMENTING NR J /1y PRODUCTION IN GUMP

"  Previous studies on J /1 photoproduction have seen a poor description with LO calculations
®  NLO hard scattering corrections are large and improve the description

= Using the same LO treatment as for our previous global analysis, we see the problem persists for DV J/y P
" Here we will add in both NLO hard scattering corrections and NLO GPD evolution!

= NLO GPD evolution kernel is known in conformal moment space (Kumericki et al 2008)
= Allows for (relatively) fast numerical implementation!

= Finite mass corrections for hard scattering are only known in momentum fraction space (Flett et al 2021)

®  Mass corrections make the convolutions for converting to conformal moment space much more complicated

= Converting these is crucial in order to include photoproduction in our global analysis framework
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IMPLEMENTING NR J /1y PRODUCTION IN GUMP

"  We have implemented NLO GPD evolution for the sea quarks and gluons (valence quarks are insignificant for
small xz HERA kinematics)

®  Huge thanks to Gepard package — full NLO implementation of DVCS and DVMP for light vector mesons available!
= Conversion of NLO finite mass hard scattering terms to moment space is on going

= Collinear factorization NLO hard scattering terms are known in conformal moment space (Miiller et al 2014)

= Gives the large logs of 1/xg that are important for HERA data, mass corrections shouldn’t be too significant for higher Q?
data points
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IMPLEMENTING NR J /1y PRODUCTION IN GUMP

= Matching between the NRQCD matrix element and the distribution amplitude in conformal moment space can
introduce some ambiguity from expanding a delta function

<01>J/¢ = (bj/,(/)(Z) X 5(Z — 1/2)

= (2 —1/2) = Z 62(1 — z)C,::’/z(Qz —1)®y,
k=0,2,4...
2(2k A 3) 3/2 Not clear how to extract size of

k= 3(k n 1)(k—|— 2) k (O) truncation error!

= For simplicity we keep only the first conformal moment (asymptotic DA), so we introduce an order one
normalization factor into the amplitudes to absorb the mismatch

(DJ/¢(Z) — NDAq)asymptotiC(z)
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ANALYTIC CONTINUATION OF MOMENTS

= Gegenbauer moments from ERBL region only give a formal sum for the full GPD

=  Analytic continuation to all values of x /¢ yields two bases for the ERBL and DLGAP regions

29HIT(5/2 + j)¢—7-1
pillal <€,6) = T U I 1 aje) oy (-1 -+ 2,2 557

sin(n[j +1]) _._ i+1 j+2 s B2
Pj(x>§,§)= ([7r ])37 4 121*—’1( 5 ' 9 75/2+.7;$_2

These conformal wave functions can then be used to reconstruct the GPD from its conformal moments with a
Mellin-Barnes integral

c+1i00

. i . pj(x7€) '
Bz =5 /‘wamﬁu+uyﬁ@¢)

c—100
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CONFORMAL MOMENT POLYNOMIALITY

"  We can expand the Gegenbauer polynomials in a power serles, connecting them to the Mellin moment
expansion %) ™k
Gy (z) = Z %

= Then using the polynomiality of the Mellin moments we obtaln a polynomiality condition on the conformal

moments .
Fenx [ aect (3)Faen
1 i,
:/1decJ?_,k§j_kxkF(:n,§,t)
-1 k=0

J s . 1
== Zc;,kgj_k/ dacxkF(:n,f,t)
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NON-ZERO SKEWNESS GLOBAL FIT: CFFS

= CFFs from fit are mostly consistent with local extraction from JLAB Hall A data as well as

KMI5 extractions

= Some inconsistencies can be expected from degeneracies in

sections — need more polarization configurations!

2l @ JLabHallA
L= KM15

— This work

ReH
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AMBIGUITY IN ERBL REGION

=  We can add terms in the moment expansion which only contribute to the ERBL region

_ (g)] e (%), 1ol <lé

= This suggests an interpretation of the GPDs in terms of quark and antiquark pieces as well
as a ERBL region distribution amplitude (DA) piece

Fq(m,f, t) — Fﬁ(ma ga t) + F/q(—x,f,t) + F%qq'

quark antiquark DA
> —¢& r<§ E>x>—¢

21T (2 + §)
T'(3)r(j +3)

(_1)jpj (ZL‘, 6) = g_j—l
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CONNECTIONTO D-TERM

®  These DA terms don’t have a large affect on CFFs, but they do contain information related
to the various D-terms in QCD, ex.

®  Gravitational form factor C/D
1

/ de o H,(z, &) = A (t) + (26)2C, (1)

-1
= Dispersion relation subtraction term

1
PetQ) =1 [a€ ((2g 7 org ) FE - 0,607 +0(. @)

= By constraining the DA terms with further experimental data and lattice calculations, we
can access the mechanical properties of hadrons contained in these D-terms!
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CONSTRAINING DA TERMS

=  Adding in lattice GPD calculations can give us constrains directly in the ERBL region

= Adding just a few terms to the moment expansion can remove the unphysical oscillations

GPD H,_4 at &£ = 1/3 and —t = 0.69 GeV’ tuned in DA-like region

- -- Original value — Tuned with DA terms Lat. ref. value -

'
L '
L ’
2+ b -
L ]
7
[ 1
i
R ]
r 1
L 1 7
L 1 I
2L ' ) 4

-04 -0.2 0.0 April 10, 2024 36




BEST FIT v BREAKDOWN

Sub-fits X2 Nyata X =X v
Semi-forward

tPDF H 281.7 217 1.41
tPDF E 59.7 50 1.36
tPDF H 159.3 206 0.84
tPDF E 63.8 58 1.23
Off-forward

JLab DVCS 1413.7 926 ~ 1.53
H1 DVCS 19.7 24 ~ 0.82
Off-forward total 1433 950 1.53
Total 2042 1481 1.40

April 10, 2024
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Vector GPDs H and FE Axial-vector GPDs H and E
Parameter | Value (uncertainty) | Parameter | Value (uncertainty)
NE 4.923 (89) NE 4.833 (429)
el 0.216 (7) ol -0.264 (34)
B, 3.229 (23) fy 3.186 (122)
ol 2.347 (51) oft. 2.182 (175)
NH 0.163 (8) NH 0.070 (33)
o 1.136 (10) ol 0.538 (112)
el 6.894 (207) Je2d 4.229 (1320)
Nil 3.359 (170) N -0.664 (170)
ol 0.184 (18) ol 0.248 (76)
By 4.418 (77) Bi 3.572 (477)
i 3.482 (171) off] 0.542 (103)
NE 0.249 (12) NE -0.086 (42)
o 1.052 (10) 4 0.495 (137)
BY 6.554 (216) 5;{ 2.554 (897)
NH 2.864 (108) N7 0.243 (304)
ol 1.052 (8) alf 0.631 (330)
BY 7.413 (165) i 2.717 (2865)
NE 0.181 (38) NE 7.993 (3480)
of 0.907 (17) of 0.800 (116)
B, 1.102 (245) e 6.415 (1577)
o 0.461 (86) alf. 2.076 (933)
NE -0.223 (47) N, -2.407 (1239)

RE, 0.768 (169) RE, 38 (8)
RY, 0.229 (0.032) R, 0.246 (81)
RH, -2.639 (202) RY, 1.656 (375)
R, 0.799 (285) RE, 2.684 (171)
RY, 3.404 (1157) RZ, 38 (2)
bE, 3.448 (133) bH, 9.852 (1330)
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