Accessing Generalized Parton Distributions through $2 \rightarrow 3$ exclusive processes

Samuel Wallon

Laboratoire de Physique des 2 Infinis

Laboratoire de Physique des 2 Infinis Irène Joliot-Curie IJCLab CNRS / Université Paris Saclay Orsay

DIS 2024

STRⓃG
220

9th April 2024
Grenoble
in collaboration with:
B. Pire (CPhT, Palaiseau), R. Boussarie (CPHT, Palaiseau),
S. Nabeebaccus (IJCLab, Orsay) L. Szymanowski (NCBJ, Warsaw),
G. Duplančić, K. Passek-Kumerički (IRB, Zagreb)

The big picture

Extensions from DIS

- DIS: inclusive process \rightarrow forward amplitude $(t=0)$ (optical theorem)
(DIS: Deep Inelastic Scattering)
ex: $e^{ \pm} p \rightarrow e^{ \pm} X$ at HERA
$x \Rightarrow$ 1-dimensional structure

```
    Structure Function
= Coefficient Function \otimes Parton Distribution Function
    (hard)
                        (soft)
```


- DVCS: exclusive process \rightarrow non forward amplitude $\left(-t \ll s=W^{2}\right)$ (DVCS: Deep Vitual Compton Scattering)
Fourier transf.: $t \leftrightarrow$ impact parameter $(x, t) \Rightarrow$ 3-dimensional structure

Amplitude
$=\underset{\text { (hard) }}{\text { Coefficient Function }} \otimes \underset{\text { (soft) }}{\text { Generalized }}$ Parton Distribution

Extensions from DVCS

- Meson production: γ replaced by ρ, π, \cdots
\square
Amplitude
$=\underset{(\mathrm{soft})}{\mathrm{GPD}} \otimes \underset{(\text { hard })}{\mathrm{CF}} \otimes \otimes \quad \begin{gathered}\text { Distribution Amplitude } \\ (\text { soft })\end{gathered}$

Collins, Frankfurt, Strikman '97; Radyushkin '97
proofs valid only for some restricted cases

Collinear factorization

Meson electroproduction: factorization with a GPD and a DA
The building blocks

Γ, Γ^{\prime} : Dirac matrices compatible with quantum numbers: C, P, T, chirality

Similar structure for gluon exchange

Collinear factorization

Classification of twist 2 GPDs

- For quarks, one should distinguish the exchanges
- without helicity flip (chiral-even Γ^{\prime} matrices): 4 chiral-even GPDs: $H^{q} \xrightarrow{\xi=0, t=0}$ PDF $q, E^{q}, \tilde{H}^{q} \xrightarrow{\xi=0, t=0}$ polarized PDFs $\Delta q, \tilde{E}^{q}$

$$
\begin{aligned}
F^{q} & =\left.\frac{1}{2} \int \frac{d z^{+}}{2 \pi} e^{i x P^{+} z^{-}}\left\langle p^{\prime}\right| \bar{q}\left(-\frac{1}{2} z\right) \gamma^{+} q\left(\frac{1}{2} z\right)|p\rangle\right|_{z^{+}=0, z_{\perp}=0} \\
& =\frac{1}{2 P^{+}}\left[H^{q}(x, \xi, t) \bar{u}\left(p^{\prime}\right) \gamma^{+} u(p)+E^{q}(x, \xi, t) \bar{u}\left(p^{\prime}\right) \frac{i \sigma^{+\alpha} \Delta_{\alpha}}{2 m} u(p)\right] \\
\tilde{F}^{q} & =\left.\frac{1}{2} \int \frac{d z^{-}}{2 \pi} e^{i x P^{+} z^{-}}\left\langle p^{\prime}\right| \bar{q}\left(-\frac{1}{2} z\right) \gamma^{+} \gamma_{5} q\left(\frac{1}{2} z\right)|p\rangle\right|_{z+=0, z_{\perp}=0} \\
& =\frac{1}{2 P^{+}}\left[\tilde{H}^{q}(x, \xi, t) \bar{u}\left(p^{\prime}\right) \gamma^{+} \gamma_{5} u(p)+\tilde{E}^{q}(x, \xi, t) \bar{u}\left(p^{\prime}\right) \frac{\gamma_{5} \Delta^{+}}{2 m} u(p)\right] .
\end{aligned}
$$

- with helicity flip (chiral-odd Γ^{\prime} mat.): 4 chiral-odd GPDs:
$H_{T}^{q} \xrightarrow{\xi=0, t=0}$ quark transversity PDFs $\delta q, E_{T}^{q}, \tilde{H}_{T}^{q}, \tilde{E}_{T}^{q}$
$\left.\frac{1}{2} \int \frac{d z^{-}}{2 \pi} e^{i x P^{+} z^{-}}\left\langle p^{\prime}\right| \bar{q}\left(-\frac{1}{2} z\right) i \sigma^{+i} q\left(\frac{1}{2} z\right)|p\rangle\right|_{z^{+}=0, z_{\perp}=0}$
$=\frac{1}{2 P^{+}} \bar{u}\left(p^{\prime}\right)\left[H_{T}^{q} i \sigma^{+i}+\tilde{H}_{T}^{q} \frac{P^{+} \Delta^{i}-\Delta^{+} P^{i}}{m^{2}}+E_{T}^{q} \frac{\gamma^{+} \Delta^{i}-\Delta^{+} \gamma^{i}}{2 m}+\tilde{E}_{T}^{q} \frac{\gamma^{+} P^{i}-P^{+} \gamma^{i}}{m}\right]$

Collinear factorization
 Twist 2 GPDs

Classification of twist 2 GPDs

- analogously, for gluons:
- 4 gluonic GPDs without helicity flip:

$$
\begin{aligned}
& H^{g} \xrightarrow{\xi=0, t=0} \text { PDF } x g \\
& E^{g} \\
& \tilde{H}^{g} \xrightarrow{\xi=0, t=0} \text { polarized PDF } x \Delta g \\
& \tilde{E}^{g}
\end{aligned}
$$

- 4 gluonic GPDs with helicity flip:
(no forward limit reducing to gluons PDFs here: a change of 2 units of helicity cannot be compensated by a spin $1 / 2$ target)

Chiral-odd sector: Transversity of the nucleon using hard processes

What is transversity?

- Transverse spin content of the proton:

$$
\begin{array}{ccc}
|\uparrow\rangle_{(x)} & \sim & |\rightarrow\rangle+|\leftarrow\rangle \\
|\downarrow\rangle_{(x)} & \sim & |\rightarrow\rangle-|\leftarrow\rangle \\
\text { spin along } x & & \text { helicity states }
\end{array}
$$

- Observables which are sensitive to helicity flip thus give access to transversity $\Delta_{T} q(x)$. Poorly known.
- Transversity GPDs are completely unknown experimentally.

- For massless (anti)particles, chirality $=(-)$ helicity
- Transversity is thus a chiral-odd quantity
- Since (in the massless limit) QCD and QED are chiral-even $\left(\gamma^{\mu}, \gamma^{\mu} \gamma^{5}\right)$, the chiral-odd quantities $\left(1, \gamma^{5},\left[\gamma^{\mu}, \gamma^{\nu}\right]\right)$ which one wants to measure should appear in pairs

Transversity of the nucleon using hard processes: using a two body final state process?

How to get access to transversity GPDs?

- the dominant DA of ρ_{T} is of twist 2 and chiral-odd ($\left[\gamma^{\mu}, \gamma^{\nu}\right]$ coupling)
- unfortunately $\gamma^{*} N^{\uparrow} \rightarrow \rho_{T} N^{\prime}=0$
- This cancellation is true at any order : such a process would require a helicity transfer of 2 from a photon.
- lowest order diagrammatic argument:

$$
\gamma^{\alpha}\left[\gamma^{\mu}, \gamma^{\nu}\right] \gamma_{\alpha} \rightarrow 0
$$

[Diehl, Gousset, Pire], [Collins, Diehl]

Can one circumvent this vanishing?

- This vanishing only occurs at twist 2
- At twist 3 this process does not vanish [Ahmad, Goldstein, Liuti], [Goloskokov, Kroll]
- However processes involving twist 3 DAs may face problems with factorization (end-point singularities)
can be made safe in the high-energy k_{T}-factorization approach [Anikin, Ivanov, Pire, Szymanowski, S.W.]

3-body final state process

- $\gamma N \rightarrow M M N^{\prime}$:
- at small-x:
D. Ivanov, B. Pire, L. Szymanowski, O. Teryaev [hep-ph/0209300]
R. Enberg, B. Pire, L. Szymanowski [hep-ph/0601138]
- at medium energies (GPDs):
M. El Beiyad, B. Pire, M. Segond, L. Szymanowski, SW [1001.4491]
- $\gamma N \rightarrow \gamma M N^{\prime}$:
R. Boussarie, B. Pire, L. Szymanowski, SW [1609.03830]
G. Duplančić, K. Passek-Kumerički, B. Pire, L. Szymanowski, SW [1809.08104]
G. Duplančić, S. Nabeebaccus, K. Passek-Kumerički, B. Pire, L. Szymanowski, SW [2212.00655, 2302.12026]

Moreover, the richer kinematics of the process allows the sensitivity of GPDs wrt x to be probed (beyond moment-type dependence, e.g. in DVCS):
J. Qiu, Z. Yu [2305.15397]

Probing GPDs using ρ or π meson + photon production

- We consider the process $\gamma N \rightarrow \gamma M N^{\prime} \quad M=$ meson
- Collinear factorization of the amplitude for $\gamma+N \rightarrow \gamma+M+N^{\prime}$ at large $M_{\gamma M}^{2}, t^{\prime}, u^{\prime}$ and small t

> large angle factorization
> à la Brodsky Lepage

- Mesons considered in the final state: $\pi^{ \pm}, \rho_{L, T}^{ \pm, 0}$

- Leading order and leading twist

Probing

GPDs using π meson + photon production

Processes with 3 body final states can give access to chiral-even GPDs

chiral-even twist 2 GPD

Probing

GPDs using ρ_{L} meson + photon production

Processes with 3 body final states can give access to chiral-even GPDs

chiral-even twist 2 GPD

Probing

GPDs using ρ_{T} meson + photon production

Processes with 3 body final states can give access to chiral-odd GPDs

chiral-odd twist 2 GPD

Probing
 GPDs using $\quad \gamma$ production

Processes with 3 body final states can give access to chiral-odd GPDs
How did we manage to circumvent the no-go theorem for $2 \rightarrow 2$ processes?

Typical LO non-zero diagram for a transverse ρ meson
the σ matrices (from DA and GPD sides) do not kill it anymore!

Computation

Kinematics to handle GPD in a 3-body final state process

- use a Sudakov basis :
light-cone vectors p, n with $2 p \cdot n=s$
- assume the following kinematics:
- $\Delta_{\perp} \ll \mathbf{p}_{\perp}$
- $M^{2}, m_{M}^{2} \ll M_{\gamma M}^{2}$
- initial state particle momenta:

$$
q^{\mu}=n^{\mu}, p_{1}^{\mu}=(1+\xi) p^{\mu}+\frac{M^{2}}{s(1+\xi)} n^{\mu}
$$

- final state particle momenta:

$$
\begin{aligned}
p_{2}^{\mu} & =(1-\xi) p^{\mu}+\frac{M^{2}+\vec{p}_{t}^{2}}{s(1-\xi)} n^{\mu}+\Delta_{\perp}^{\mu} \\
k^{\mu} & =\alpha n^{\mu}+\frac{\left(\vec{p}_{t}-\vec{\Delta}_{t} / 2\right)^{2}}{\alpha s} p^{\mu}+\mathbf{p}_{\perp}^{\mu}-\frac{\Delta_{\perp}^{\mu}}{2} \\
p_{M}^{\mu} & =\alpha_{M} n^{\mu}+\frac{\left(\vec{p}_{t}+\vec{\Delta}_{t} / 2\right)^{2}+m_{M}^{2}}{\alpha_{M} s} p^{\mu}-\mathbf{p}_{\perp}^{\mu}-\frac{\Delta_{\perp}^{\mu}}{2}
\end{aligned}
$$

Computation

Kinematics

$$
\gamma(q)+N\left(p_{1}\right) \rightarrow \gamma(k)+M\left(p_{M}, \varepsilon_{M}\right)+N^{\prime}\left(p_{2}\right)
$$

Useful Mandelstam variables:

$$
\begin{aligned}
& t=\left(p_{2}-p_{1}\right)^{2}, \\
& u^{\prime}=\left(p_{M}-q\right)^{2}, \\
& t^{\prime}=(k-q)^{2}, \\
& S_{\gamma N}=\left(q+p_{1}\right)^{2} .
\end{aligned}
$$

- Factorisation requires:
$-u^{\prime}>1 \mathrm{GeV}^{2},-t^{\prime}>1 \mathrm{GeV}^{2}$ and $(-t)_{\min } \leqslant-t \leqslant .5 \mathrm{GeV}^{2}$
\Longrightarrow sufficient to ensure large $\mathbf{p}_{\mathbf{T}}$
- Cross-section differential in $\left(-u^{\prime}\right)$ and $M_{\gamma M}^{2}$, and evaluated at $(-t)=(-t)_{\min }$, covering $S_{\gamma N}$ from $\sim 4 \mathrm{GeV}^{2}$ to $20000 \mathrm{GeV}^{2}$
- Helicity conserving GPDs at twist 2 :

$$
\begin{aligned}
& \int \frac{d z^{-}}{4 \pi} e^{i x P^{+} z^{-}}\left\langle p_{2}, \lambda_{2}\right| \bar{\psi}_{q}\left(-\frac{1}{2} z^{-}\right) \gamma^{+} \psi\left(\frac{1}{2} z^{-}\right)\left|p_{1}, \lambda_{1}\right\rangle \\
= & \frac{1}{2 P^{+}} \bar{u}\left(p_{2}, \lambda_{2}\right)\left[H^{q}(x, \xi, t) \gamma^{+}+E^{q}(x, \xi, t) \frac{i \sigma^{\alpha+} \Delta_{\alpha}}{2 m}\right] \\
& \int \frac{d z^{-}}{4 \pi} e^{i x P^{+} z^{-}}\left\langle p_{2}, \lambda_{2}\right| \bar{\psi}_{q}\left(-\frac{1}{2} z^{-}\right) \gamma^{+} \gamma^{5} \psi\left(\frac{1}{2} z^{-}\right)\left|p_{1}, \lambda_{1}\right\rangle \\
= & \frac{1}{2 P^{+}} \bar{u}\left(p_{2}, \lambda_{2}\right)\left[\tilde{H}^{q}(x, \xi, t) \gamma^{+} \gamma^{5}+\tilde{E}^{q}(x, \xi, t) \frac{\gamma^{5} \Delta^{+}}{2 m}\right]
\end{aligned}
$$

- We will consider the simplest case when $\Delta_{\perp}=0$.
- In that case and in the forward limit $\xi \rightarrow 0$ only the H^{q} and \tilde{H}^{q} terms survive.
- Helicity conserving (vector) DA at twist 2 :

$$
\langle 0| \bar{u}(0) \gamma^{\mu} u(x)\left|\rho^{0}(p, s)\right\rangle=\frac{p^{\mu}}{\sqrt{2}} f_{\rho} \int_{0}^{1} d u e^{-i u p \cdot x} \phi_{\|}(u)
$$

Computation

- Helicity flip GPD at twist 2 :

$$
\begin{aligned}
& \int \frac{d z^{-}}{4 \pi} e^{i x P^{+} z^{-}}\left\langle p_{2}, \lambda_{2}\right| \bar{\psi}_{q}\left(-\frac{1}{2} z^{-}\right) i \sigma^{+i} \psi\left(\frac{1}{2} z^{-}\right)\left|p_{1}, \lambda_{1}\right\rangle \\
= & \frac{1}{2 P^{+}} \bar{u}\left(p_{2}, \lambda_{2}\right)\left[H_{T}^{q}(x, \xi, t) i \sigma^{+i}+\tilde{H}_{T}^{q}(x, \xi, t) \frac{P^{+} \Delta^{i}-\Delta^{+} P^{i}}{M_{N}^{2}}\right. \\
+ & \left.E_{T}^{q}(x, \xi, t) \frac{\gamma^{+} \Delta^{i}-\Delta^{+} \gamma^{i}}{2 M_{N}}+\tilde{E}_{T}^{q}(x, \xi, t) \frac{\gamma^{+} P^{i}-P^{+} \gamma^{i}}{M_{N}}\right] u\left(p_{1}, \lambda_{1}\right)
\end{aligned}
$$

- We will consider the simplest case when $\Delta_{\perp}=0$.
- In that case and in the forward limit $\xi \rightarrow 0$ only the H_{T}^{q} term survives.
- Transverse ρ DA at twist 2 :
$\langle 0| \bar{u}(0) \sigma^{\mu \nu} u(x)\left|\rho^{0}(p, s)\right\rangle=\frac{i}{\sqrt{2}}\left(\epsilon_{\rho}^{\mu} p^{\nu}-\epsilon_{\rho}^{\nu} p^{\mu}\right) f_{\rho}^{\perp} \int_{0}^{1} d u e^{-i u p \cdot x} \phi_{\perp}(u)$

Quark GPDs are parametrised in terms of Double Distributions
[A. Radyushkin: hep-ph/9805342]

For polarised PDFs Δq (and hence transversity PDFs δq), two scenarios are proposed for the parameterization:

- "standard" scenario, with flavor-symmetric light sea quark and antiquark distributions
- "valence" scenario with a completely flavor-asymmetric light sea quark densities.

Computation

- We take the simplistic asymptotic form of the DAs

$$
\phi_{\mathrm{as}}(z)=6 z(1-z) .
$$

- We also investigate the effect of using a holographic DA:

$$
\phi_{\mathrm{hol}}(z)=\frac{8}{\pi} \sqrt{z(1-z)} .
$$

Suggested by

- AdS/QCD correspondence [S. Brodsky, G. de Teramond: hep-ph/0602252],
- dynamical chiral symmetry breaking on the light-front [C. Shi, C. Chen,
L. Chang, C. Roberts, S. Schmidt, H, Zong: 1504.00689],
- recent lattice results. [X. Gao, A. Hanlon, N. Karthik, S. Mukherjee, P. Petreczky, P. Scior, S. Syritsyn, Y. Zhao: 2206.04084]

Computation

$$
\mathcal{A}=\int_{-1}^{1} d x \int_{0}^{1} d z T_{H}(x, \xi, z) G P D(x, \xi, t) \Phi_{M}(z)
$$

- Differential cross section:

$$
\left.\frac{d \sigma}{d t d u^{\prime} d M_{\gamma M}^{2}}\right|_{-t=(-t)_{\min }}=\frac{|\overline{\mathcal{A}}|^{2}}{32 S_{\gamma N}^{2} M_{\gamma M}^{2}(2 \pi)^{3}}
$$

- Kinematic parameters: $S_{\gamma N}, M_{\gamma M}^{2},-t,-u^{\prime}$
- Useful dimensionless variables (hard part):

$$
\begin{aligned}
\alpha & =\frac{-u^{\prime}}{M_{\gamma M}^{2}} \\
\xi & =\frac{M_{\gamma M}^{2}}{2\left(S_{\gamma N}-m_{N}^{2}\right)-M_{\gamma M}^{2}} .
\end{aligned}
$$

- Recently, factorisation has been proved for the process $\pi N \rightarrow \gamma \gamma N^{\prime}$ by J. Qiu, Z. Yu [2205.07846].
- This was extended to a wide range of $2 \rightarrow 3$ exclusive processes by J. Qiu, Z. Yu [2210.07995]
- The proof relies on having large p_{T}, rather than large invariant mass (e.g. photon-meson pair).
- In fact, NLO computation has been performed for $\gamma N \rightarrow \gamma \gamma N^{\prime}$ by
O. Grocholski, B. Pire, P. Sznajder, L. Szymanowski, J. Wagner [2110.00048, 2204.00396]
- Also, NLO computation for $\gamma \gamma \rightarrow \pi^{+} \pi^{-}$by crossing symmetry G. Duplancic, B. Nizic: [hep-ph/0607069].

Issues with exclusive $\pi^{0} \gamma$ photoproduction which allows for gluonic exchange in t-channel:
violation of collinear factorization at twist 2 due to Glauber gluons!
see Saad Nabeebaccus's talk on Wednesday

Results

Single differential cross-section

$$
\gamma \rho_{p}^{+}{ }_{L} \text { versus } \gamma \pi_{p}^{+}
$$

Dashed: Holographic DA non-dashed: Asymptotical DA
Dotted: standard scenario non-dotted: valence scenario
\Longrightarrow Effect of GPD model more important on π_{p}^{+}than on ρ_{p}^{+}

Results

$$
\gamma \pi_{p}^{+} \text {versus } \gamma \pi_{n}^{-}
$$

$\sigma_{\gamma \pi_{n}^{-}}^{\text {even }}(\mathrm{pb})$

Dashed: Holographic DA non-dashed: Asymptotical DA
Dotted: standard scenario non-dotted: valence scenario
\Longrightarrow Huge effect from GPD model in π_{p}^{+}case.

Results

Integrated cross-section

$$
\gamma \rho_{p}^{+}{ }_{L} \text { versus } \gamma \rho_{p}^{+}{ }_{T}
$$

$\sigma_{\gamma \rho_{p}^{+}}^{\text {odd }}(\mathrm{pb})$

Dashed: Holographic DA
Dotted: standard scenario
non-dashed: Asymptotical DA
non-dotted: valence scenario
$\Longrightarrow \xi^{2}$ suppression in the chiral-odd case causes the cross-section to drop
rapidly with $S_{\gamma N}\left(\xi \approx \frac{M_{\gamma \rho}^{2}}{2 S_{\gamma N}}\right)$.

Results

Polarisation Asymmetries wrt incoming photon

We consider an unpolarised target, and determine polarisation asymmetries wrt the incoming photon.

- Circular polarisation asymmetry $=0$ (QCD/QED invariance under parity)
- Linear polarisation asymmetry:

$$
\mathrm{LPA}=\frac{d \sigma_{x}-d \sigma_{y}}{d \sigma_{x}+d \sigma_{y}}
$$

$x=$ direction defined by p_{\perp} (direction of outgoing photon in the \perp plane)

- In fact,

$$
\mathrm{LPA}_{\mathrm{Lab}}=\mathrm{LPA} \cos (2 \theta)
$$

where θ is the angle between the lab frame x-direction and p_{\perp}.

- Kleiss-Stirling spinor techniques used to obtain expressions.
- Both asymmetries are zero in chiral-odd case!

Results

LPA wrt incoming photon: Single-differential level

$$
\gamma \rho_{p}^{+}{ }_{L} \text { versus } \gamma \pi_{p}^{+}
$$

$$
S_{\gamma N}=8,14,20 \mathrm{GeV}^{2}
$$

Dashed: Holographic DA non-dashed: Asymptotical DA
Dotted: standard scenario non-dotted: valence scenario
\Longrightarrow GPD model changes the behaviour of the LPA completely in the π_{p}^{+}case!

Results

LPA wrt incoming photon: Integrated level

$$
\gamma \rho_{n}^{-}{ }_{L} \text { versus } \gamma \pi_{n}^{-}
$$

Dashed: Holographic DA
non-dashed: Asymptotical DA
Dotted: standard scenario non-dotted: valence scenario
\Rightarrow LPAs are sizeable!

Prospects at experiments

Counting rates: JLab

Good statistics: For example, at JLab Hall B:

- untagged incoming $\gamma \Rightarrow$ Weizsäcker-Williams distribution
- with an expected luminosity of $\mathcal{L}=100 \mathrm{nb}^{-1} \mathrm{~s}^{-1}$, for 100 days of run:

$$
\begin{aligned}
& -\rho_{L}^{0}(\text { on } p): \approx 2.4 \times 10^{5} \\
& -\rho_{T}^{0}(\text { on } p): \approx 4.2 \times 10^{4}(\text { Chiral-odd }) \\
& -\rho_{L}^{+}: \approx 1.4 \times 10^{5} \\
& -\rho_{T}^{+}: \approx 6.7 \times 10^{4}(\text { Chiral-odd }) \\
& -\pi^{+}: \approx 1.8 \times 10^{5}
\end{aligned}
$$

- No problem in detecting outgoing photon at JLab.

Prospects at experiments

Counting rates: EIC

- At the future EIC, with an expected integrated luminosity of $10 \mathrm{fb}^{-1}$ (about 100 times smaller than JLab):

$$
\begin{aligned}
& -\rho_{L}^{0}(\text { on } p): \approx 2.4 \times 10^{4} \\
& -\rho_{T}^{0}(\text { on } p): \approx 2.4 \times 10^{3} \text { (Chiral-odd) } \\
& -\rho_{L}^{+}: \approx 1.5 \times 10^{4} \\
& -\rho_{T}^{+}: \approx 4.2 \times 10^{3} \text { (Chiral-odd) } \\
& -\pi^{+}: \approx 1.3 \times 10^{4}
\end{aligned}
$$

- Small ξ study:

$$
\begin{aligned}
& 300<S_{\gamma N} / \mathrm{GeV}^{2}<20000\left(5 \cdot 10^{-5}<\xi<5 \cdot 10^{-3}\right): \\
& \quad-\rho_{L}^{0}(\text { on } p): \approx 1.2 \times 10^{3} \\
& -\rho_{T}^{0}(\text { on } p): \approx 6.5(\text { Chiral-odd })(\text { tiny }) \\
& \\
& -\rho_{L}^{+}: \approx 9.3 \times 10^{2} \\
& -\pi^{+}: \approx 5.0 \times 10^{2}
\end{aligned}
$$

Prospects at experiments
 LHC at UPC

For $\mathrm{p}-\mathrm{Pb}$ UPCs at LHC (integrated luminosity of $1200 \mathrm{nb}^{-1}$):

- With future data from runs 3 and 4 ,

$$
\begin{aligned}
& -\rho_{L}^{0}: \approx 1.6 \times 10^{4} \\
& -\rho_{T}^{0}: \approx 1.7 \times 10^{3} \text { (Chiral-odd) } \\
& -\rho_{L}^{+}: \approx 1.1 \times 10^{4} \\
& -\rho_{T}^{+}: \approx 2.9 \times 10^{3} \text { (Chiral-odd) } \\
& -\pi^{+}: \approx 9.3 \times 10^{3}
\end{aligned}
$$

- $300<S_{\gamma N} / \mathrm{GeV}^{2}<20000\left(5 \cdot 10^{-5}<\xi<5 \cdot 10^{-3}\right)$:
$-\rho_{L}^{0}: \approx 8.1 \times 10^{2}$
$-\rho_{L}^{+}: \approx 6.4 \times 10^{2}$
$-\pi^{+}: \approx 3.4 \times 10^{2}$

Conclusions

- Exclusive photoproduction of photon-meson pair provides additional channel for extracting GPDs: Interesting effects from choice of different mesons, access to chiral-odd GPDs at the leading twist
- Especially interesting since it can probe chiral-odd GPDs at the leading twist, and provides better sensitivity to x-dependence of GPDs
- Proof of factorisation for this family of processes now available, but $\pi^{0} \gamma$ photoproduction suffers from collinear factorisation breaking effects at the leading twist: see Saad Nabeebaccus's talk
- Good statistics in various experiments, particularly at JLab
- Small ξ limit of GPDs can be investigated by exploiting high energies available in collider mode such as EIC and UPCs at LHC.
- Compute $\gamma N \rightarrow \gamma \pi^{0} N$ in high-energy $\left(k_{T}\right)$ factorisation [ongoing]
- Compute NLO corrections (422 NLO diagrams, vs 20 LO diagrams!). Careful treatment of $i \epsilon$ factors in denominators [ongoing]
- Generalise to electroproduction $\left(Q^{2} \neq 0\right)$
- Add Bethe-Heitler component (photon emitted from incoming lepton)
- zero in chiral-odd case
- suppressed in chiral-even case

