

XXXI International Workshop on Deep Inelastic Scattering 8-12 April 2024, Grenoble, France

New physical processes for extracting generalized parton distributions with a better sensitivity to partonic structure

- Explore hadron's partonic structure without breaking it!
- Challenges for studying exclusive processes
- Need new processes
- **QCD** factorization for exclusive processes
- **Gammary and Outlook**

In collaboration with Zhite Yu, Nobuo Sato, ...

Jianwei Qiu Jefferson Lab, Theory Center

How to see internal structure of a hadron – breaking it?

Measured k_T is NOT the same as k_T of the confined motion!

1

• Too larger Q² could weaken our precision to probe the true hadron structure!

Transverse momentum Broadening from the shower:

$$\begin{array}{rcl} & & & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ \end{array} \right) \xrightarrow{2} 1 \\ \end{array}$$

Structure information can be diluted by the collision induced shower!

How to see internal structure of a hadron – breaking it?

□ If the hadron is broken, the hard hitting induces gluon radiations, like in SIDIS, ...

Transverse momentum Broadening from the shower:

 $\Delta k_T^2 \propto \Lambda_{\rm QCD}^2 \times \alpha_s(C_F, C_A) \times \log(Q^2/\Lambda_{\rm QCD}^2) \gtrsim 1 \times \log(s/Q^2)$

• Measured k_{τ} is NOT the same as k_{τ} of the confined motion!

Structure information can be diluted by the collision induced shower!

• Too larger Q² could weaken our precision to probe the true hadron structure!

Explore hadron's partonic structure without breaking it!

 \Box Hit the proton hard without breaking it \Rightarrow Diffractive scattering to keep proton intact

Explore hadron's partonic structure without breaking it!

\Box Hit the proton hard without breaking it \Rightarrow Diffractive scattering to keep proton intact

□ Hard exclusive processes for extracting GPDs:

QCD energy-momentum tensor:

$$T^{\mu\nu} = \sum_{i=q,g} T_i^{\mu\nu} \quad \text{with} \quad T_q^{\mu\nu} = \bar{\psi}_q \, i\gamma^{(\mu} \overleftrightarrow{D}^{\nu)} \, \psi_q - g^{\mu\nu} \bar{\psi}_q \left(i\gamma \cdot \overleftrightarrow{D} - m_q \right) \psi_q \quad \text{and} \quad T_g^{\mu\nu} = F^{a,\mu\eta} F^{a,\,\mu\nu} + \frac{1}{4} g^{\mu\nu} \left(F^a_{\rho\eta} \right)^2$$

Gravitational" form factors:

$$\langle p' | T_i^{\mu\nu} | p \rangle = \bar{u}(p') \left[A_i(t) \frac{P^{\mu} P^{\nu}}{m} + J_i(t) \frac{i P^{(\mu} \sigma^{\nu)\Delta}}{2m} + D_i(t) \frac{\Delta^{\mu} \Delta^{\nu} - g^{\mu\nu} \Delta^2}{4m} + m \,\bar{c}_i(t) \, g^{\mu\nu} \right] u(p)$$

Connection to GPD moments:

$$\int_{-1}^{1} dx \, x \, F_i(x,\xi,t) \propto \langle p'|T_i^{++}|p\rangle \quad \propto \quad \bar{u}(p') \left[\underbrace{\left(A_i + \xi^2 D_i\right) \gamma^+ + \left(B_i - \xi^2 D_i\right)}_{\int_{-1}^{1} dx \, x \, H_i(x,\xi,t)} \underbrace{\int_{-1}^{1} dx \, x \, E_i(x,\xi,t)}_{\int_{-1}^{1} dx \, x \, E_i(x,\xi,t)} \right] u(p)$$

□ Angular momentum sum rule:

i = q, g

$$J_i = \lim_{t \to 0} \int_{-1}^{1} dx \, x \left[H_i(x,\xi,t) + E_i(x,\xi,t) \right]$$

3D tomography Relation to GFF Angular Momentum $C_i(t) \leftrightarrow D_i(t)/4$

Related to pressure & stress force inside h

Ji, PRL78, 1997

Polyakov, schweitzer, Inntt. J. Mod. Phys. A33, 1830025 (2018) Burkert, Elouadrhiri , Girod Nature 557, 396 (2018)

x-dependence of GPDs!

Need to know the x-dependence of GPDs to construct the proper moments!

Jefferson Lab

Limitation of exclusive processes: *x*-dependence

Limitation of exclusive processes: *x*-dependence

Single-diffractive hard exclusive processes (SDHEP)

Single diffractive – keep the hadron intact:

Qiu & Yu, JHEP 08 (2022) 103 PRD 107 (2023) 014007 PRL 131 (2023) 161902

Single-Diffractive Hard Exclusive Processes (SDHEP)

The exchanged state $A^*(p-p')$ is a sum of all possible partonic states, n=1,2, ..., allowed by

- Quantum numbers of h(p) h'(p')
- Symmetry of producing non-vanishing *H*

Need entanglement between q_T and loop momentum fraction x for the sensitivity on the x-dependence of GPDs! Jefferson Lab

Factorization for SDHEP in the two-stage paradigm

□ Soft gluons cancel when coupling to color neutral hadrons:

Two new example processes with enhanced *x*-sensitivity

J-PARC, AMBER

Qiu & Yu, JHEP 08 (2022) 103 Qiu & Yu, 2401.13207 (PRD in press)

JLab Hall D

G. Duplancic et al., JHEP 11 (2018) 179
G. Duplancic et al., JHEP 03 (2023) 241
G. Duplancic et al., PRD 107 (2023), 094023
Qiu & Yu, PRD 107 (2023), 014007
Qiu & Yu, PRL 131 (2023), 161902

Enhanced *x*-sensitivity: (1) diphoton production

[Qiu & Yu, 2401.13207 (PRD in press)]

Diphoton process:
$$N\pi \to N'\gamma\gamma$$
: (1) $p\pi^- \to n\gamma\gamma$; (2) $n\pi^+ \to p\gamma\gamma$

$$\frac{d\sigma}{d|t|\,d\xi\,d\cos\theta} = 2\pi \left(\alpha_e \alpha_s \frac{C_F}{N_c}\right)^2 \frac{1}{\xi^2 s^3} \cdot \left[(1-\xi^2) \sum_{\alpha=\pm} \left(|\mathcal{M}_{\alpha}^{[\widetilde{H}]}|^2 + |\widetilde{\mathcal{M}}_{\alpha}^{[H]}|^2 \right) - \left(\xi^2 + \frac{t}{4m^2}\right) \sum_{\alpha=\pm} |\widetilde{\mathcal{M}}_{\alpha}^{[E]}|^2 - \frac{\xi^2 t}{4m^2} \sum_{\alpha=\pm} |\mathcal{M}_{\alpha}^{[\widetilde{E}]}|^2 - 2\xi^2 \sum_{\alpha=\pm} \operatorname{Re}\left(\widetilde{\mathcal{M}}_{\alpha}^{[H]} \widetilde{\mathcal{M}}_{\alpha}^{[E]*} + \mathcal{M}_{\alpha}^{[\widetilde{H}]} \mathcal{M}_{\alpha}^{[\widetilde{E}]*} \right) \right]$$

Nucleon transition GPDs

Enhanced *x*-sensitivity: (1) diphoton production (at J-PARC or AMBER)

[Qiu & Yu, 2401.13207 (PRD in press)]

Enhanced *x*-sensitivity: (1) diphoton production (at J-PARC or AMBER)

[Qiu & Yu, 2401.13207 (PRD in press)]

Exclusive Drell-Yan dilepton production

 $N + \pi \to N' + \gamma^* \left[\to \ell^+ + \ell^- \right]$

- Lower rate
- Blind to shadow GPDs

Enhanced x-sensitivity: (2) γ - π pair photoproduction (at JLab Hall D)

D Polarization asymmetries:

$$\frac{d\sigma}{d|t|\,d\xi\,d\cos\theta\,d\phi} = \frac{1}{2\pi} \frac{d\sigma}{d|t|d\xi\,d\cos\theta} \cdot \left[1 + \lambda_N \lambda_\gamma \,A_{LL} + \zeta \,A_{UT}\cos2\left(\phi - \phi_\gamma\right) + \lambda_N \zeta \,A_{LT}\sin2\left(\phi - \phi_\gamma\right)\right]$$
$$\frac{d\sigma}{d|t|\,d\xi\,d\cos\theta} = \pi \left(\alpha_e \alpha_s\right)^2 \left(\frac{C_F}{N_c}\right)^2 \frac{1 - \xi^2}{\xi^2 s^3} \Sigma_{UU}$$

$$\begin{split} \Sigma_{UU} &= |\mathcal{M}_{+}^{[\tilde{H}]}|^{2} + |\mathcal{M}_{-}^{[\tilde{H}]}|^{2} + |\widetilde{\mathcal{M}}_{+}^{[H]}|^{2} + |\widetilde{\mathcal{M}}_{-}^{[H]}|^{2}, \\ A_{LL} &= 2 \, \Sigma_{UU}^{-1} \, \mathrm{Re} \left[\mathcal{M}_{+}^{[\tilde{H}]} \, \widetilde{\mathcal{M}}_{+}^{[H]*} + \mathcal{M}_{-}^{[\tilde{H}]} \, \widetilde{\mathcal{M}}_{-}^{[H]*} \right], \\ A_{UT} &= 2 \, \Sigma_{UU}^{-1} \, \mathrm{Re} \left[\widetilde{\mathcal{M}}_{+}^{[H]} \, \widetilde{\mathcal{M}}_{-}^{[H]*} - \mathcal{M}_{+}^{[\tilde{H}]} \, \mathcal{M}_{-}^{[\tilde{H}]*} \right], \\ A_{LT} &= 2 \, \Sigma_{UU}^{-1} \, \mathrm{Im} \left[\mathcal{M}_{+}^{[\tilde{H}]} \, \widetilde{\mathcal{M}}_{-}^{[H]*} + \mathcal{M}_{-}^{[\tilde{H}]} \, \widetilde{\mathcal{M}}_{+}^{[H]*} \right]. \end{split}$$

Neglecting: (1) E and \widetilde{E} ; (2) gluon channel

[Qiu & Yu, PRL 131 (2023) 161902]

Enhanced x-sensitivity: (2) γ - π pair photoproduction (at JLab Hall D)

Enhanced x-sensitivity: (2) γ - π pair photoproduction (at JLab Hall D)

Enhanced x-sensitivity: (2) γ - π pair photoproduction (at upgraded JLab energy)

GPD models = **GK** model + **shadow GPDs**

$$\int_{-1}^{1} \frac{dx \, S(x,\xi)}{x - \xi \pm i\epsilon} = 0$$

Goloskokov, Kroll, `05, `07, `09 Bertone et al. `21 Moffat et al. `23

Summary

QCD Factorization allows to probe proton structure

GPDs provide tomographic images

□ But suffer from the challenging *x*-dependence problem

Two new processes to give enhanced *x***-sensitivity**

□ Still not there yet:

- Need more processes, more observables
- Need input from lattice QCD
- Need global fit
- Need to solve the end point issues of exclusive processes (momentum of active parton goes to zero)

A long but challenging & exciting way to go!

Thanks!

