Probing quark Orbital Angular Momentum in ep collisions

Shohini Bhattacharya
Los Alamos National Laboratory
April 9, 2024
In Collaboration with:
Duxin Zheng (Shandong Institute of Advanced Tech.) Jian Zhou (Shandong University)

Based on:
arXiv: 2312.01309

Wigner function - The "mother function"

Parton Distribution Functions

```
PDFs (x)
```


Wigner function - The "mother function"

Wigner function - The "mother function"

Transverse Momentum-dependent Distributions

Wigner function - The "mother function"

Generalized Transverse Momentum-dependent Distributions
(Meissner, Metz, Schlegel, 2009) GTMDs $\left(x, \vec{k}_{\perp}, \Delta\right)$

Wigner function - The "mother function"

Wigner functions $\left(x, \vec{k}_{\perp}, \vec{b}_{\perp}\right)$ (Belitsky, Ji, Yuan, 2003)

(Meissner, Metz, Schlegel, 2009) GTMDs $\left(x, \vec{k}_{\perp}, \Delta\right)$

Spin of proton

Jaffe-Manohar spin decomposition

An incomplete story:

Spin of proton

Jaffe-Manohar spin decomposition

An incomplete story:

Quark helicity $\sim 30 \% \quad$ Gluon helicity $\sim 40 \%$

Spin of proton

Wigner functions \& Orbital Angular Momentum

Wigner functions in Quantum Mechanics
(Wigner, 1932)

- Calculate from wave functions:

$$
W(x, k)=\int \frac{d x^{\prime}}{2 \pi} e^{-i k x^{\prime}} \psi\left(x+\frac{x^{\prime}}{2}\right) \psi^{*}\left(x-\frac{x^{\prime}}{2}\right)
$$

- Expectation value of observables:

$$
\langle\mathcal{O}\rangle=\int d x \int d k \mathcal{O}(x, k) W(x, k)
$$

Wigner functions \& Orbital Angular Momentum

Wigner functions in Quantum Mechanics
(Wigner, 1932)

Wigner functions in parton physics
(Belitsky, Ji, Yuan, 2003)

- Calculate from wave functions:

$$
W(x, k)=\int \frac{d x^{\prime}}{2 \pi} e^{-i k x^{\prime}} \psi\left(x+\frac{x^{\prime}}{2}\right) \psi^{*}\left(x-\frac{x^{\prime}}{2}\right)
$$

- Expectation value of observables:

$$
\langle\mathcal{O}\rangle=\int d x \int d k \mathcal{O}(x, k) W(x, k)
$$

- Calculate from fourier transform of GTMD correlator:

$$
W^{[\Gamma]}\left(x, \vec{k}_{\perp}, \vec{b}_{\perp}\right)
$$

- Application: Orbital Angular Momentum (OAM)

$$
L_{z}^{q, g}=\int d x \int d^{2} k_{\perp} d^{2} b_{\perp}\left(\vec{b}_{\perp} \times \vec{k}_{\perp}\right)_{z} W^{q, g}\left(x, \vec{b}_{\perp}, \vec{k}_{\perp}\right)
$$

Wigner functions \& Orbital Angular Momentum

Wigner functions \& Orbital Angular Momentum

Big question: Experimental observable?

Expectation value of observables:

- Application: Relation between GTMD $F_{1,4}^{q, g}$ \& OAM

$$
L_{z}^{q, g}=-\int d x \int d^{2} \vec{k}_{\perp} \frac{\vec{k}_{\perp}^{2}}{M^{2}} F_{1,4}^{q, g}\left(x, k_{\perp}, \xi=0, \Delta_{\perp}=0\right)
$$

Developments

arXiv: 1612.02438 (2016)
Hunting the Gluon Orbital Angular Momentum at the Electron-Ion Collider

Xiangdong Ji, ${ }^{1,2}$ Feng Yuan, ${ }^{3}$ and Yong Zhao ${ }^{1,3}$

Developments

arXiv: 1612.02438 (2016)

Hunting the Gluon Orbital Angular Momentum at the Electron-Ion Collider

Xiangdong Ji, ${ }^{1,2}$ Feng Yuan, ${ }^{3}$ and Yong Zhao ${ }^{1,3}$

arXiv: 1702.04387 (2017)

Generalized TMDs and the exclusive double Drell-Yan process

Developments

arXiv: 1612.02438 (2016)

Hunting the Gluon Orbital Angular Momentum at the Electron-Ion Collider

Xiangdong Ji, ${ }^{1,2}$ Feng Yuan, ${ }^{3}$ and Yong Zhao ${ }^{1,3}$

arXiv: 1702.04387 (2017)

Generalized TMDs and the exclusive double Drell-Yan process

arXiv: 1802.10550 (2018)

Exclusive double quarkonium production and generalized TM
Shohini Bhattacharya, ${ }^{1}$ Andreas Metz, ${ }^{1}$ Vikash Kumar Ojha, ${ }^{2}$ Jeng-Yuan Tsai, ${ }^{1}$

arXiv: 1807.08697 (2018)

Probing the Weizsäcker-Williams gluon Wigner distribution in $p p$ collisions Renaud Boussarie, ${ }^{1}$ Yoshitaka Hatta, ${ }^{2}$ Bo-Wen Xiao, ${ }^{3,4}$ and Feng Yuan ${ }^{5}$

Developments

arXiv: 1612.02438 (2016)

Hunting the Gluon Orbital Angular Momentum at the Electron-Ion Collider

Xiangdong Ji, ${ }^{1,2}$ Feng Yuan, ${ }^{3}$ and Yong Zhao ${ }^{1,3}$

arXiv: 1702.04387 (2017)

Generalized TMDs and the exclusive double Drell-Yan process

arXiv: 1802.10550 (2018)

arXiv: 1807.08697 (2018)

Exclusive double quarkonium production and generalized TM
Shohini Bhattacharya, ${ }^{1}$ Andreas Metz, ${ }^{1}$ Vikash Kumar Ojha, ${ }^{2}$ Jeng-Yuan Tsai, ${ }^{1}$

arXiv: 1912.08182 (2019)

Probing the gluon Sivers function with an unpolarized target:
GTMD distributions and the Odderons
Renaud Boussarie, ${ }^{1}$ Yoshitaka Hatta, ${ }^{1}$ Lech Szymanowski, ${ }^{2}$ and Samuel Wallon ${ }^{3,4}$

Developments

arXiv: 1612.02438 (2016)

Hunting the Gluon Orbital Angular Momentum at the Electron-Ion Collider

Xiangdong Ji, ${ }^{1,2}$ Feng Yuan, ${ }^{3}$ and Yong Zhao ${ }^{1,3}$
arXiv: 1702.04387 (2017)

Generalized TMDs and the exclusive double Drell-Yan process

arXiv: 1802.10550 (2018)

Exclusive double quarkonium production and generalized TM
Shohini Bhattacharya, ${ }^{1}$ Andreas Metz, ${ }^{1}$ Vikash Kumar Ojha, ${ }^{2}$ Jeng-Yuan Tsai, ${ }^{1}$

arXiv: 1912.08182 (2019)

Probing the gluon Sivers function with an unpola
GTMD distributions and the Odderons
Renaud Boussarie, ${ }^{1}$ Yoshitaka Hatta, ${ }^{1}$ Lech Szymanowski, ${ }^{2}$ and $\mathrm{S} \varepsilon$

arXiv: 1807.08697 (2018)

Probing the Weizsäcker-Williams gluon Wigner distribution in $p p$ collisions Renaud Boussarie, ${ }^{1}$ Yoshitaka Hatta, ${ }^{2}$ Bo-Wen Xiao, ${ }^{3,4}$ and Feng Yuan ${ }^{5}$

arXiv: 2106.13466 (2021)

Probing the gluon tomography in photoproduction of di-pions
Yoshikazu Hagiwara, Cheng Zhang, Jian Zhou, and Ya-jin Zhou

Developments

arXiv: 1612.02438 (2016)

Hunting the Gluon Orbital Angular Momentum at the Electron-Ion Collider

Xiangdong Ji, ${ }^{1,2}$ Feng Yuan, ${ }^{3}$ and Yong Zhao ${ }^{1,3}$
arXiv: 1702.04387 (2017)

Generalized TMDs and the exclusive double Drell-Yan process

arXiv: 1802.10550 (2018)

Exclusive double quarkonium production and generalized TM
Shohini Bhattacharya, ${ }^{1}$ Andreas Metz, ${ }^{1}$ Vikash Kumar Ojha, ${ }^{2}$ Jeng-Yuan Tsai, ${ }^{1}$

arXiv: 1912.08182 (2019)

Probing the gluon Sivers function with an unpola GTMD distributions and the Odderon:

Renaud Boussarie, ${ }^{1}$ Yoshitaka Hatta, ${ }^{1}$ Lech Szymanowski, ${ }^{2}$ and $\mathrm{S} \varepsilon$

Shohini Bhattacharya, ${ }^{1}$ Andreas Metz, ${ }^{1}$ and Jian Zhou ${ }^{2}$

arXiv: 1807.08697 (2018)

Probing the Weizsäcker-Williams gluon Wigner distribution in $p p$ collisions Renaud Boussarie, ${ }^{1}$ Yoshitaka Hatta, ${ }^{2}$ Bo-Wen Xiao, ${ }^{3,4}$ and Feng Yuan ${ }^{5}$

arXiv: 2106.13466 (2021)

Probing the gluon tomography in photoproduction of di-pions
Yoshikazu Hagiwara, Cheng Zhang, Jian Zhou, and Ya-jin Zhou
arXiv: 2201.08709/2404.04209 (2022/2024)
Signature of the gluon orbital angular momentum
Shohini Bhattacharya, ${ }^{1, *}$ Renaud Boussarie, ${ }^{2, \dagger}$ and Yoshitaka Hatta ${ }^{1,3, \ddagger}$

Developments

arXiv: 1612.02438 (2016)

Hunting the Gluon Orbital Angular Momentum at the Electron-Ion Collider

Xiangdong Ji, ${ }^{1,2}$ Feng Yuan, ${ }^{3}$ and Yong Zhao ${ }^{1,3}$
arXiv: 1702.04387 (2017)

Generalized TMDs and the exclusive double Drell-Yan process

arXiv: 1802.10550 (2018)

Exclusive double quarkonium production and generalized TM
Shohini Bhattacharya, ${ }^{1}$ Andreas Metz, ${ }^{1}$ Vikash Kumar Ojha, ${ }^{2}$ Jeng-Yuan Tsai, ${ }^{1}$

arXiv: 1912.08182 (2019)

Probing the gluon Sivers function with an unpola GTMD distributions and the Odderons

Renaud Boussarie, ${ }^{1}$ Yoshitaka Hatta, ${ }^{1}$ Lech Szymanowski, ${ }^{2}$ and S\&
arXiv: 2201.08709/2404.04209 (2022/2024)
Signature of the gluon orbital angular momentum
Shohini Bhattacharya, ${ }^{1, *}$ Renaud Boussarie, ${ }^{2, \dagger}$ and Yoshitaka Hatta ${ }^{1,3, \ddagger}$

arXiv: 1807.08697 (2018)

Probing the Weizsäcker-Williams gluon Wigner distribution in $p p$ collisions Renaud Boussarie, ${ }^{1}$ Yoshitaka Hatta, ${ }^{2}$ Bo-Wen Xiao, ${ }^{3,4}$ and Feng Yuan ${ }^{5}$

arXiv: 2106.13466 (2021)

Probing the gluon tomography in photoproduction of di-pions

Yoshikazu Hagiwara, Cheng Zhang, Jian Zhou, and Ya-jin Zhou

arXiv: 2205.00045 (2022)

Angular correlations in exclusive dijet photoproduction in ultra-peripheral PbPb collisions at $\sqrt{s_{N N}}=5.02 \mathrm{TeV}$

Developments

Exclusive double Drell-Yan:

Until now, this has been the sole known process sensitive to quark GTMDs

arXiv: 2201.08709/2404.04209 (2022/2024)
Signature of the gluon orbital angular momentum
arXiv: 2205.00045 (2022)
Angular correlations in exclusive dijet photoproduction in ultra-peripheral PbPb collisions at $\sqrt{s_{N N}}=5.02 \mathrm{TeV}$

Probing quark OAM through double Drell-Yan
Main findings
arXiv: 1702.04387 (2017)
Generalized TMDs and the exclusive double Drell-Yan process
Shohini Bhattacharya, ${ }^{1}$ Andreas Metz, ${ }^{1}$ and Jian Zhou ${ }^{2}$

Probing quark OAM through double Drell-Yan

Main findings

Example of an observable sensitive to OAM \& spin-orbit correlation :

$$
\begin{aligned}
\frac{1}{2}\left(\tau_{X Y}-\tau_{Y X}\right)=\frac{4}{M_{a}^{2}}\left(\varepsilon_{\perp}^{i j} \Delta q_{\perp}^{i} \Delta_{a \perp}^{j}\right) \operatorname{Re} .\{ & C^{(-)}\left[F_{1,1} \phi_{\pi}\right] C^{(+)}\left[\vec{\beta}_{\perp} \cdot \vec{k}_{a \perp} \boldsymbol{F}_{1,4}^{*} \phi_{\pi}^{*}\right] \\
& \left.-C^{(+)}\left[G_{1,4} \phi_{\pi}\right] C^{(-)}\left[\vec{\beta}_{\perp} \cdot \vec{p}_{a \perp} G_{1,1}^{*} \phi_{\pi}^{*}\right]\right\}
\end{aligned}
$$

Spin-orbit entanglement in the Color Glass Condensate Shohini Bhattacharya, ${ }^{1, *}$ Renaud Boussarie, ${ }^{2, \dagger}$ and Yoshitaka Hatta ${ }^{3,4, \ddagger}$

Probing quark OAM through double Drell-Yan

Main findings

Challenges:

- Low count rate (Amplitude $\sim \alpha_{e m}^{2}$)

Probing quark OAM through double Drell-Yan

Main findings

Challenges:

- Low count rate (Amplitude $\sim \alpha_{e m}^{2}$)
- Sensitivity to GTMDs only in the ERBL region $-\xi<x<\xi$

$$
\begin{aligned}
& \text { OAM density: } \quad L^{q / g}(x, \boldsymbol{\xi})=-\int d^{2} \vec{k}_{\perp} \frac{\vec{k}_{\perp}^{2}}{M^{2}} F_{1,4}^{q, g}\left(x, k_{\perp}, \boldsymbol{\xi}, \Delta_{\perp}=0\right) \\
& \text { OAM: } \quad L^{q / g}=\int d x L^{q / g}(x, \boldsymbol{\xi}=\mathbf{0})
\end{aligned}
$$

The challenge lies in extrapolating the distribution to the forward limit, where the OAM equation is applicable

Our work

arXiv: 2312.01309 (2023)

Probing quark orbital angular momentum at EIC and EicC
Shohini Bhattacharya, ${ }^{1}$ Duxin Zheng, ${ }^{2}$ and Jian Zhou ${ }^{3}$

Main Observable:

Longitudinal single-target spin asymmetry

Exclusive π^{0} production in ep collisions

Known results

$$
\begin{aligned}
\frac{d \sigma_{T}}{d t} & =\frac{1}{2 \kappa}\left(\left|M_{0-,++}\right|^{2}+2\left|M_{0+,++}\right|^{2}\right) \\
\frac{d \sigma_{T T}}{d t} & =-\frac{1}{\kappa}\left|M_{0+,++}\right|^{2} \cos (2 \phi)
\end{aligned}
$$

The coupling of twist-2 helicity-flip chiral odd GPDs with the twist-3 distribution amplitude of the neutral pion yields the leading power contribution to the unpolarized cross-section:

$$
\begin{aligned}
& M_{0-,++}=\frac{e_{0}}{Q} \sqrt{1-\xi^{2}}\left\langle H_{T}\right\rangle \\
& M_{0+,++}=-\frac{e_{0}}{Q} \frac{\sqrt{-t^{\prime}}}{4 m}\left\langle\bar{E}_{T}\right\rangle
\end{aligned}
$$

See for example L. Frankfurt, P. Pobylitsa, M. Polyakov, \& M. Strikman, 1999

Probing quark OAM through π^{0} production in ep collisions

Scattering amplitude

Probing quark OAM through π^{0} production in ep collisions

Probing quark OAM through π^{0} production in ep collisions

Probing quark OAM through π^{0} production in ep collisions

Probing quark OAM through π^{0} production in ep collisions

Scattering amplitude

Scattering amplitude:

$$
A \propto \int d x \int d^{2} k_{\perp} H\left(x, \xi, z, k_{\perp}, \Delta_{\perp}\right) f^{q}\left(x, \xi, k_{\perp}, \Delta_{\perp}\right) \int d z \phi_{\pi}(z)
$$

Collinear twist-expansion of hard part:

$$
H\left(k_{\perp}, \Delta_{\perp}\right)=H\left(k_{\perp}=0, \Delta_{\perp}=0\right)+\left.\frac{\partial H\left(k_{\perp}, \Delta_{\perp}=0\right)}{\partial k_{\perp}^{\mu}}\right|_{k_{\perp}=0} k_{\perp}^{\mu}+\left.\frac{\partial H\left(k_{\perp}=0, \Delta_{\perp}\right)}{\partial \Delta_{\perp}^{\mu}}\right|_{\Delta_{\perp}=0} \Delta_{\perp}^{\mu}+\ldots
$$

Use special-propagator technique to ensure electromagnetic gauge invariance

Probing quark OAM through π^{0} production in ep collisions

Probing quark OAM through π^{0} production in ep collisions

Probing quark OAM through π^{0} production in ep collisions

Probing quark OAM through π^{0} production in ep collisions

Angular correlations

Scattering amplitudes depend on different angular correlations:

$$
\begin{aligned}
& \mathcal{M}_{1}=\frac{g_{s}^{2} e f_{\pi}}{2 \sqrt{2}} \frac{\left(N_{c}^{2}-1\right) 2 \xi}{N_{c}^{2} \sqrt{1-\xi^{2}}} \delta_{\lambda \lambda^{\prime}} \frac{\epsilon_{\perp} \times \Delta_{\perp}}{Q^{2}}\left\{\mathcal{F}_{1,1}+\mathcal{G}_{1,1}\right\} \\
& \mathcal{M}_{2}=\frac{g_{s}^{2} e f_{\pi}}{2 \sqrt{2}} \frac{\left(N_{c}^{2}-1\right) 2 \xi}{N_{c}^{2} \sqrt{1-\xi^{2}}} \delta_{\lambda,-\lambda^{\prime}} \frac{M \epsilon_{\perp} \cdot S_{\perp}}{Q^{2}}\left\{\mathcal{F}_{1,2}+\mathcal{G}_{1,2}\right\} \quad S_{\perp}^{\mu}=\left(0^{+}, 0^{-},-i, \lambda\right) \\
& \mathcal{M}_{4}=\frac{i g_{s}^{2} e f_{\pi}}{2 \sqrt{2}} \frac{\left(N_{c}^{2}-1\right) 2 \xi}{N_{c}^{2} \sqrt{1-\xi^{2}}} \lambda \delta_{\lambda \lambda^{\prime}} \frac{\epsilon_{\perp} \cdot \Delta_{\perp}}{Q^{2}}\left\{\mathcal{F}_{1,4}+\mathcal{G}_{1,4}\right\}
\end{aligned}
$$

Probing quark OAM

Compton Form Factors:

Angular correlations

Scattering amplitudes depend on different angular correlations:

$$
\begin{align*}
\mathcal{F}_{1,1}= & \int_{-1}^{1} d x \frac{x^{2} \int d^{2} k_{\perp} F_{1,1}^{u+d}\left(x, \xi, \Delta_{\perp}, k_{\perp}\right)}{(x+\xi-i \epsilon)^{2}(x-\xi+i \epsilon)^{2}} \\
& \times \int_{0}^{1} d z \frac{\phi_{\pi}(z)\left(1+z^{2}-z\right)}{z^{2}(1-z)^{2}}, \tag{8}\\
\mathcal{G}_{1,1}= & \int_{-1}^{1} d x \int_{0}^{1} d z \frac{\phi_{\pi}(z)\left(x^{2}+2 x^{2} z+\xi^{2}\right)}{z^{2}(x+\xi-i \epsilon)^{2}(x-\xi+i \epsilon)^{2}} \\
& \times \int_{\mathcal{F}^{2}} d^{2} k_{\perp} \frac{k_{\perp}^{2}}{M^{2}} G_{1,1}^{u+d}\left(x, \xi, \Delta_{\perp}, k_{\perp}\right), \\
\mathcal{F}_{1,2}= & \int_{-1}^{1} d x x \frac{\xi\left(1-\xi^{2}\right) \int d^{2} k_{\perp} k_{\perp}^{2} F_{1,2}^{u+d}\left(x, \xi, \Delta_{\perp}, k_{\perp}\right)}{M^{2}(x+\xi-i \epsilon)^{2}(x-\xi+i \epsilon)^{2}} \\
& \times \int_{0}^{1} d z \frac{\phi_{\pi}(z)\left(1+z^{2}-z\right)}{z^{2}(1-z)^{2}}, \\
\mathcal{G}_{1,2}= & \int_{-1}^{1} d x \int_{0}^{1} d z \frac{\phi_{\pi}(z)\left(x^{2}+2 x^{2} z+\xi^{2}\right)\left(1-\xi^{2}\right)}{z^{2}(x+\xi-i \epsilon)^{2}(x-\xi+i \epsilon)^{2}} \\
& \times \int_{\mathcal{F}^{2}} d^{2} k_{\perp} \frac{k_{\perp}^{2}}{M^{2}} G_{1,2}^{u+d}\left(x, \xi, \Delta_{\perp}, k_{\perp}\right), \\
\mathcal{F}_{1,4}= & \int_{-1}^{1} d x \frac{x \xi \int d^{2} k_{\perp} k_{\perp}^{2} F_{1,4}^{u+d}\left(x, \xi, \Delta_{\perp}, k_{\perp}\right)}{M^{2}(x+\xi-i \epsilon)^{2}(x-\xi+i \epsilon)^{2}} \\
& \times \int_{0}^{1} d z \frac{\phi_{\pi}(z)\left(1+z^{2}-z\right)}{z^{2}(1-z)^{2}}, \tag{12}\\
\mathcal{G}_{1,4}= & \int_{-1}^{1} d x \int_{0}^{1} d z \frac{x\left(4 \xi^{2} z+\xi^{2}-2 x^{2} z+x^{2}\right)}{z^{2} \xi(x+\xi-i \epsilon)^{2}(x-\xi+i \epsilon)^{2}} \phi_{\pi}(z) \\
& \times \int^{2} d^{2} k_{\perp} G_{1,4}^{u+d}\left(x, \xi, \Delta_{\perp}, k_{\perp}\right) . \tag{13}\\
& (13)
\end{align*}
$$

Probing quark OAM through π^{0} production in ep collisions

Probing quark OAM through π^{0} production in ep collisions

Cross section

$$
\begin{aligned}
& \frac{d \sigma}{d t d Q^{2} d x_{B} d \phi}=\frac{\left(N_{c}^{2}-1\right)^{2} \alpha_{e m}^{2} \alpha_{s}^{2} f_{\pi}^{2} \xi^{3} \Delta_{\perp}^{2}}{2 N_{c}^{4}\left(1-\xi^{2}\right) Q^{10}(1+\xi)}\left[1+(1-y)^{2}\right] \\
& \times\left\{\left[\left|\mathcal{F}_{1,1}+\mathcal{G}_{1,1}\right|^{2}+\left|\mathcal{F}_{1,4}+\mathcal{G}_{1,4}\right|^{2}+2 \frac{M^{2}}{\Delta_{\perp}^{2}}\left|\mathcal{F}_{1,2}+\mathcal{G}_{1,2}\right|^{2}\right]+\cos (2 \phi) a\left[-\left|\mathcal{F}_{1,1}+\mathcal{G}_{1,1}\right|^{2}+\left|\mathcal{F}_{1,4}+\mathcal{G}_{1,4}\right|^{2}\right]\right. \\
& \left.+\lambda \sin (2 \phi) 2 a \operatorname{Re}\left[\left(i \mathcal{F}_{1,4}+i \mathcal{G}_{1,4}\right)\left(\mathcal{F}_{1,1}^{*}+\mathcal{G}_{1,1}^{*}\right)\right]\right\} \\
& \quad \quad \mid \\
& \quad a=\frac{2(1-y)}{1+(1-y)^{2}}
\end{aligned}
$$

Probing quark OAM through π^{0} production in ep collisions

Cross section

$$
\frac{d \sigma}{d t d Q^{2} d x_{B} d \phi}=\frac{\left(N_{c}^{2}-1\right)^{2} \alpha_{e m}^{2} \alpha_{s}^{2} f_{\pi}^{2} \xi^{3} \Delta_{\perp}^{2}}{2 N_{c}^{4}\left(1-\xi^{2}\right) Q^{10}(1+\xi)}\left[1+(1-y)^{2}\right]
$$

Distinguished experimental signature of quark OAM
$\phi=\phi_{l_{\perp}}-\phi_{\Delta_{\perp}}$
e

Leptonic plane

Hadronic plane
 P

π^{0}

Probing quark OAM through π^{0} production in ep collisions

Cross section

$$
\frac{d \sigma}{d t d Q^{2} d x_{B} d \phi}=\frac{\left(N_{c}^{2}-1\right)^{2} \alpha_{e m}^{2} \alpha_{s}^{2} f_{\pi}^{2} \xi^{3} \Delta_{\perp}^{2}}{2 N_{c}^{4}\left(1-\xi^{2}\right) Q^{10}(1+\xi)}\left[1+(1-y)^{2}\right]
$$

$$
\times\left\{\left[\left|\mathcal{F}_{1,1}+\mathcal{G}_{1,1}\right|^{2}+\left|\mathcal{F}_{1,4}+\mathcal{G}_{1,4}\right|^{2}+2 \frac{M^{2}}{\Delta_{\perp}^{2}}\left|\mathcal{F}_{1,2}+\mathcal{G}_{1,2}\right|^{2}\right]+\cos (2 \phi) a\left[-\left|\mathcal{F}_{1,1}+\mathcal{G}_{1,1}\right|^{2}+\left|\mathcal{F}_{1,4}+\mathcal{G}_{1,4}\right|^{2}\right]\right.
$$

- Probe quark Sivers function through an unpolarized target

$$
\left.\operatorname{Im}\left[\boldsymbol{F}_{1,2}\right]\right|_{\Delta=0}=-f_{1 T}^{\perp}
$$

(Similar to the gluon GTMD $F_{1,2}$, as discussed in Boussarie, Hatta, Szymanowski, Wallon, 2019)

Probing quark OAM through π^{0} production in ep collisions

Cross section

$$
\frac{d \sigma}{d t d Q^{2} d x_{B} d \phi}=\frac{\left(N_{c}^{2}-1\right)^{2} \alpha_{e m}^{2} \alpha_{s}^{2} f_{\pi}^{2} \xi^{3} \Delta_{\perp}^{2}}{2 N_{c}^{4}\left(1-\xi^{2}\right) Q^{10}(1+\xi)}\left[1+(1-y)^{2}\right]
$$

$$
\times\left\{\left[\left|\mathcal{F}_{1,1}+\mathcal{G}_{1,1}\right|^{2}+\left|\mathcal{F}_{1,4}+\mathcal{G}_{1,4}\right|^{2}+2 \frac{M^{2}}{\Delta_{\perp}^{2}}\left|\mathcal{F}_{1,2}+\mathcal{G}_{1,2}\right|^{2}\right]+\cos (2 \phi) a\left[-\left|\mathcal{F}_{1,1}+\mathcal{G}_{1,1}\right|^{2}+\left|\mathcal{F}_{1,4}+\mathcal{G}_{1,4}\right|^{2}\right]\right.
$$

Surprise!

- Probe quark Sivers function through an unpolarized target

$$
\left.\operatorname{Im}\left[\boldsymbol{F}_{1,2}\right]\right|_{\Delta=0}=-f_{1 T}^{\perp}
$$

- Probe quark worm-gear function through an unpolarized target

$$
\left.\operatorname{Re}\left[G_{1,2}\right]\right|_{\Delta=0}=g_{1 T}
$$

Probing quark OAM through π^{0} production in ep collisions

Cross section

$$
\frac{d \sigma}{d t d Q^{2} d x_{B} d \phi}=\frac{\left(N_{c}^{2}-1\right)^{2} \alpha_{e m}^{2} \alpha_{s}^{2} f_{\pi}^{2} \xi^{3} \Delta_{\perp}^{2}}{2 N_{c}^{4}\left(1-\xi^{2}\right) Q^{10}(1+\xi)}\left[1+(1-y)^{2}\right]
$$

$$
\times\left\{\left[\left|\mathcal{F}_{1,1}+\mathcal{G}_{1,1}\right|^{2}+\left|\mathcal{F}_{1,4}+\mathcal{G}_{1,4}\right|^{2}+2 \frac{M^{2}}{\Delta_{\perp}^{2}}\left|\mathcal{F}_{1,2}+\mathcal{G}_{1,2}\right|^{2}\right]+\cos (2 \phi) a\left[-\left|\mathcal{F}_{1,1}+\mathcal{G}_{1,1}\right|^{2}+\left|\mathcal{F}_{1,4}+\mathcal{G}_{1,4}\right|^{2}\right]\right.
$$

$+\lambda \sin (2 \phi) 2 a \operatorname{Re}\left\lceil\left(i F_{1,4}+i G_{1,4}\right)\left(F_{1.1}^{*}+G_{1}^{*} \uparrow\right.\right.$

Helicity flip terms persist even when $\Delta_{\perp} \rightarrow 0$

Probing quark OAM through π^{0} production in ep collisions

Cross section

$$
\begin{aligned}
& \frac{d \sigma}{d t d Q^{2} d x_{B} d \phi}=\frac{\left(N_{c}^{2}-1\right)^{2} \alpha_{e m}^{2} \alpha_{s}^{2} f_{\xi}^{2} \xi^{3} \Delta_{\perp}^{2}}{2 N_{c}^{4}\left(1-\xi^{2}\right) Q^{10}(1+\xi)}\left[1+(1-y)^{2}\right] \\
& \times\left\{\left[\left|\mathcal{F}_{1,1}+\mathcal{G}_{1,1}\right|^{2}+\left|\mathcal{F}_{1,4}+\mathcal{G}_{1,4}\right|^{2}+2 \frac{M^{2}}{\Delta_{\perp}^{2}}\left|\mathcal{F}_{1,2}+\mathcal{G}_{1,2}\right|^{2}\right]+\cos (2 \phi) a\left[-\left|\mathcal{F}_{1,1}+\mathcal{G}_{1,1}\right|^{2}+\left|\mathcal{F}_{1,4}+\mathcal{G}_{1,4}\right|^{2}\right]\right. \\
& \left.\quad+\lambda \sin (2 \phi) 2 a \operatorname{Re}\left[\left(i \mathcal{F}_{1,4}+i \mathcal{G}_{1,4}\right)\left(\mathcal{F}_{1,1}^{*}+\mathcal{G}_{1,1}^{*}\right)\right]\right\}
\end{aligned}
$$

Since both unpolarized and polarized cross sections contribute at twist-3, the magnitudes of the asymmetries are not power-suppressed

Probing quark OAM through π^{0} production in ep collisions

Model input for numerical estimations

Ingredients for non-perturbative functions:

- Model $\left(H^{q}, \tilde{H}^{q}\right)$ according to the Double distribution approach (see Radyushkin, 9805342)

Example:

$$
H^{q}(x, \boldsymbol{\xi}, \boldsymbol{t})=\int_{-1}^{1} d \beta \int_{-1+|\beta|}^{1-|\beta|} d \alpha \delta(\beta+\boldsymbol{\xi} \alpha-x) \times \frac{3}{4}|\beta|^{-0.9 t} \frac{\left[(1-|\beta|)^{2}-\alpha^{2}\right]}{(1-|\beta|)^{3}} q(|\beta|)
$$

Probing quark OAM through π^{0} production in ep collisions

Model input for numerical estimations

Ingredients for non-perturbative functions:

- Model $\left(H^{q}, \tilde{H}^{q}\right)$ according to the Double distribution approach (see Radyushkin, 9805342)
- Model for OAM:

1. "OAM density": (Hatta, Yoshida, 1207.5332)

$$
L_{c a n}^{q}(\boldsymbol{x})=x \int_{x}^{1} \frac{d x^{\prime}}{x^{\prime}} q\left(x^{\prime}\right)-x \int_{x}^{1} \frac{d x^{\prime}}{x^{\prime 2}} \Delta q\left(x^{\prime}\right)+\text { genuine twist-three }
$$

Probing quark OAM through π^{0} production in ep collisions

Model input for numerical estimations

Ingredients for non-perturbative functions:

- Model $\left(H^{q}, \tilde{H}^{q}\right)$ according to the Double distribution approach (see Radyushkin, 9805342)
- Model for OAM:

1. "OAM density": (Hatta, Yoshida, 1207.5332)

$$
L_{c a n}^{q}(\boldsymbol{x}) \stackrel{\substack{\text { Ww } \\ \text { approx }}}{=} x \int_{x}^{1} \frac{d x^{\prime}}{x^{\prime}} q\left(x^{\prime}\right)-x \int_{x}^{1} \frac{d x^{\prime}}{x^{\prime 2}} \Delta q\left(x^{\prime}\right)+\text { genuine ivist-three }
$$

Probing quark OAM through π^{0} production in ep collisions

Model input for numerical estimations

Ingredients for non-perturbative functions:

- Model $\left(H^{q}, \tilde{H}^{q}\right)$ according to the Double distribution approach (see Radyushkin, 9805342)
- Model for OAM:

1. "OAM density": (Hatta, Yoshida, 1207.5332)

$$
L_{c a n}^{q}(\boldsymbol{x}) \stackrel{\substack{\text { WW } \\ \text { approx }}}{=} x \int_{x}^{1} \frac{d x^{\prime}}{x^{\prime}} q\left(x^{\prime}\right)-x \int_{x}^{1} \frac{d x^{\prime}}{x^{\prime 2}} \Delta q\left(x^{\prime}\right)+\text { genuing } \text { wist-three }
$$

2. Use the Double distribution approach to construct $x L^{q}(x, \boldsymbol{\xi}) e^{\boldsymbol{t} / \Lambda}$ from $x L^{q}(x)$

Probing quark OAM through π^{0} production in ep collisions

Model input for numerical estimations

Ingredients for non-perturbative functions:

- Pion distribution amplitude:

$$
\text { Asymptotic form } \quad \phi_{\pi}(z)=6 z(1-z)
$$

Probing quark OAM through π^{0} production in ep collisions

Model input for numerical estimations

End-point singularity \& discontinuity:

$$
\mathcal{F}_{1,4}=\int_{-1}^{1} d x \frac{x \xi \int d^{2} k_{\perp} k_{\perp}^{2} F_{1,4}^{u+d}\left(x, \xi, \Delta_{\perp}, k_{\perp}\right)}{M^{2}(x+\xi-i \epsilon)^{2}(x-\xi+i \epsilon)^{2}} \times \int_{0}^{\mathbf{1}} d \boldsymbol{d} \frac{\phi_{\pi}(z)\left(1+z^{2}-z\right)}{z^{2}(1-z)^{2}}
$$

Model-dependent method:

$$
\int_{\left\langle p_{\perp}^{2}\right\rangle / Q^{2}}^{1-\left\langle p_{\perp}^{2}\right\rangle / Q^{2}} d z
$$

S. V. Goloskokov and P. Kroll, 2005

Probing quark OAM through π^{0} production in ep collisions

Model input for numerical estimations

End-point singularity \& discontinuity:

$$
\mathcal{F}_{1,4}=\int_{-1}^{1} d x \frac{x \xi \int d^{2} k_{\perp} k_{\perp}^{2} F_{1,4}^{u+d}\left(x, \xi, \Delta_{\perp}, k_{\perp}\right)}{M^{2}(\boldsymbol{x}+\boldsymbol{\xi}-\boldsymbol{i} \boldsymbol{\epsilon})^{\mathbf{2}}(\boldsymbol{x}-\boldsymbol{\xi}+\boldsymbol{i} \boldsymbol{\epsilon})^{\mathbf{2}}}
$$

Model-dependent method:

S. V. Goloskokov and P. Kroll, 2005

$$
\frac{1}{(x-\xi+i \epsilon)^{2}} \rightarrow \frac{1}{\left(x-\xi-\left\langle\boldsymbol{p}_{\perp}^{2}\right\rangle / Q^{2}+i \epsilon\right)^{2}}
$$

Probing quark OAM through π^{0} production in ep collisions

Numerical results

Kinematics:

	$Q^{2}\left(\mathrm{GeV}^{2}\right)$	$\sqrt{s}_{\text {ep }}(\mathrm{GeV})$
EIC	10	100
EicC	3	16

Probing quark OAM through π^{0} production in ep collisions

Numerical results

Kinematics:

	$Q^{2}\left(\mathrm{GeV}^{2}\right)$	$\sqrt{s}_{\text {ep }}(\mathrm{GeV})$
EIC	10	100
EicC	3	16

- We focus on large skewness (ξ) region to suppress gluon contribution

Probing quark OAM through π^{0} production in ep collisions

Numerical results

Kinematics:

	$Q^{2}\left(\mathrm{GeV}^{2}\right)$	$\sqrt{s}_{\text {ep }}(\mathrm{GeV})$
EIC	10	100
EicC	3	16

- We focus on large skewness (ξ) region to suppress gluon contribution
- We focus on large momentum transfer (t) region to suppress contribution from Primakoff process

$\propto \frac{1}{t}$

Probing quark OAM through π^{0} production in ep collisions

Remark:

Accessing the gluon GTMD $\boldsymbol{F}_{1,4}$ in exclusive π^{0} production in $e p$ collisions

Shohini Bhattacharya, ${ }^{1}$ Duxin Zheng, ${ }^{2}$ and Jian Zhou ${ }^{3}$

$$
\frac{d \Delta \sigma}{d t d Q^{2} d x_{B} d \phi}=-\sin (2 \phi) \frac{x_{e m}^{3} \alpha_{s} f_{\pi}^{2}(1-y) \xi x_{B} \mathcal{F}(t)}{3 Q^{8} N_{c}}\left[\int_{0}^{1} d z \frac{\phi_{\pi}(z)}{z(1-z)}\right]^{2} \operatorname{Im}\left[\int_{-1}^{1} d x \frac{F_{1,4}^{(1)}\left(x, \xi, \Delta_{\perp}\right) / M^{2}}{(x+\xi-i \epsilon)^{2}(x-\xi+i \epsilon)^{2}}\right]
$$

The same azimuthal asymmetry, precisely mirroring what we observe in this study, emerges from the interference between the Primakoff process and the contribution from the gluon GTMD

Probing quark OAM through π^{0} production in ep collisions

Probing quark OAM through π^{0} production in ep collisions

Summary

- Generalized TMDs/Wigner functions are the holy grail of spin physics

Summary

- Generalized TMDs/Wigner functions are the holy grail of spin physics
- Probe quark OAM via exclusive π^{0} production in ep collisions
- Circumvent challenges associated with double Drell-Yan process:

Summary

- Generalized TMDs/Wigner functions are the holy grail of spin physics
- Probe quark OAM via exclusive π^{0} production in ep collisions
- Circumvent challenges associated with double Drell-Yan process

- Longitudinal single-target spin asymmetry is not power suppressed
- Asymmetry is substantial \& thus exclusive π^{0} production in ep collisions maybe a promising route to constrain quark OAM

