Overview of Nucleon Spin and 3-d structure program at JLab

Jian-ping Chen, Jefferson Lab, Virginia, USA

DIS 2024, Grenoble, France, April 8-12, 2023

- Introduction/Overview
- Highlights of JLab 1-d Spin Program
 - Spin Moments (Sum Rules and Polarizabilities) @ Low-Q²
 - Spin Moments (d2n) @ medium-high Q²
 - Spin structure (A1n/A1p) in high-x (valence quark) region
- Highlights of JLab 3-d Structure Program
 - CLAS12 (RGC): DVCS, SIDIS
 - Hall A/C: DVCS, SIDIS
- Future
 - SoLID Program: precision multi-d mapping
 - Tensor-TMD

Acknowledgment: Thanks to C. Camacho, J. Chen, M. Chen, A. Deur, E. Kinney, S Kuhn, G. Matousek, J. Poudel, D. Ruth, N. Santiesteban, K. Slifer, X. Zheng, ... and collaborators for the work in this talk and for providing slides

Introduction and Overview

Nucleon Spin and 3-D Structure JLab Program Summary

Nucleon Spin Structure Study

- 1980s: EMC (CERN) + early SLAC quark contribution to proton spin is very small $\Delta \Sigma = (12+-9+-14)\% !$ 'spin crisis'
- 1990s-2000s: SLAC, SMC (CERN), HERMES (DESY) $\Delta\Sigma = 20-30\%$, the rest: gluon and quark orbital angular momentum Jaffe and Manohar: $(\frac{1}{2})\Delta\Sigma + Lq + \Delta G + L_G = 1/2$ Ji (gauge invariant): $(\frac{1}{2})\Delta\Sigma + Lq + J_G = 1/2$ Bjorken Sum Rule verified to <10% level
 - 2000s-2020s: COMPASS (CERN), HERMES (DESY), RHIC-Spin, JLab, ...
 ΔΣ ~ 30%; ΔG ~ 20-50% (RHIC-Spin); orbital angular momentum significant
 OAM → needs transverse coordinate and momentum → GPDs, TMDs
 spin moments (sum rules/polarizabilities) → test of QCD theoretic approaches
 full spin-flavor separation: valence quarks and sea quarks

Reviews: Sebastian, Chen, Leader, arXiv:0812.3535, PPNP 63 (2009) 1; Chen, arXiv:1001.3898, IJMPE 19 (2010) 1893; ...

Summary/Highlights of JLab Spin/3-d Experiments

- 1-d Spin
 - Low-Q spin moments (sum rules and polarizabilities) Hall A g2p (trans. p), Hall B EG4 (long. p and d), SAGDH (trans. and long. ³He/n)
 - JLab12

. . .

. . .

. . .

Hall C A1n and d2n (long. and trans. 3He/n), Hall B (CLAS12) RGC (long. p and d)

3-d

- Hall B (CLAS12) RGC SIDIS and DVCS with long. p and d
- Hall A/C DVCS (unpolarized p and d)
- Hall C SIDIS (unpolarized p and d)
- Future:
 - SoLID TMD and GPD program (trans. and long. ³He/n; trans. p)
 - Tensor Spin and TMD (tensor polarized deuteron)

Spin Sum Rules and Polarizabilities

Sum RulesNucleon Structure $\leftarrow \rightarrow$ Global Propertiesmass, spin, magnetic moment, polarizabilities, ...

How is nucleon structure related (gives rise) to global properties?

→ Help understand Strong QCD (LQCD, χ EFT, ...)

Bjørken Sum Rule, GDH Sum Rule, Generalized Sum Rule

Bjørken Sum Rule (high Q²)

$$\Gamma_1^p(Q^2) - \Gamma_1^n(Q^2) = \int \{g_1^p(x,Q^2) - g_1^n(x,Q^2)\} dx = \frac{1}{6}g_A C_{NS}$$

GDH Sum Rule Real photon (Q²=0)

$$\int_{v_{in}}^{\infty} \left(\sigma_{1/2}(v) - \sigma_{3/2}(v) \right) \frac{dv}{v} = -\frac{2\pi^2 \alpha_{EM}}{M^2} \kappa^2$$

Generalized GDH Sum Rule

$$S_1(Q^2) = 4 \int_{el}^{\infty} \frac{G_1(Q^2, v) dv}{v}$$

- Q²-dependence of GDH Sum Rule provides a bridge linking strong QCD to pQCD
 - Bjorken and GDH sum rules are two limiting cases
 High Q², Operator Product Expansion : S₁(p-n) ~ g_A → Bjorken
 Q² → 0, Low Energy Theorem: S₁ ~ κ² → GDH
 - High Q²: pQCD, Operator Product Expansion
 - All Q² region: Lattice QCD calculations
 - Low Q² region (< ~0.1 GeV²): Chiral Effective Field Theory (χ EFT)

Spin Polarizabilities (higher moments)

Polarizibilities @ low Q²

Generalized forward spin polarizability:

$$\gamma_0 = \frac{4e^2 M^2}{\pi Q^6} \int x^2 (g_1 - \frac{4M^2}{Q^2} x^2 g_2) dx$$

Longitudinal-Transverse polarizability:

$$\delta_{LT} = \frac{4e^2M^2}{\pi Q^6} \int x^2 (g_1 + g_2) dx$$

They can be calculated with χEFT and Lattice QCD (4-point functions)

• Polarizibilities @ Intermediate-to-high Q²

Color polarizability (X. Ji) Color Lorentz force (M. Burkardt) $\int_0^1 x^2 \{2g_1 + 3g_2\} dx = d_2$

Dynamic twist-3 matrix element: quark-gluon correlations Lattice QCD calculations

Low-Q Spin Experiments @ JLab

- Hall B EG4: proton g₁: Spokespeople: M. Ripani, M. Battaglieri, A. Deur, R. de Vita Students: H. Kang, K. Kovacs
 X. Zheng et al., Nature Physics, vo. 17 736-741 (2021)
- Hall A g2p: proton g₂: Spokespeople: K. Slifer, J. P. Chen, A. Camsonne, D. Crabb Students: D. Ruth, R. Zielinski, C. Gu, M. Allada (Cummings), T. Badman, M. Huang, J. Liu, P. Zhu D. Ruth et al, Nature Physics 18, 1441 (2022)
- Hall A SAGDH: neutron g₁ and g₂ with L/T polarized ³He

Spokespeople: J. P. Chen, A. Deur, F. Garibaldi.
Students: V. Sulkosky, C. Peng, J. Singh, V. Laine, N. Ton, J. Yuan.
V. Sulkosky et al., Nature Phys., 17 687 (2021)
V. Sulkosky et al., PLB 805 135428 (2020)

Combining EG4 and SAGDH to form Bjorken Sum: A. Deur et al., Phys. Lett. B 825 (2022) 136878Extracting effective coupling α_{g1} :A. Deur, et al., Particles, 5-171 (2022)

JLab low-Q data on Γ_1, Γ_2 for proton and neutron

α_{g1} Extracted from the Bjorken Sum data

Bjorken sum Γ_I^{p-n} measurements

Effective coupling α_{g1}

A. Deur, *et al.* Physics Letter B 825 (2022) 136878

A. Deur, V. Burkert, J. P. Chen and W. Korsch Particles, 5-171 (2022)

Previous JLab spin polarizabilities data before low-Q experiments

Strong disagreement with χ EFT predictions available at that time: " δ_{LT} puzzle"

Spin Polarizabilities $\gamma_0(\mathbf{Q}^2)$, $\mathbf{d}_{LT}(\mathbf{Q}_2)$ for proton and neutron

Highlights of JLab12 Spin Program Spin Moments @ Intermediate Q² Spin Structure in Valence Quark Region

- Preliminary results from d2n(³He) in Hall C color polarizability/color Lorentz force
- Preliminary results from A1n(³He)@high-x: spin structure in valence region
- Overview of RGC@CLAS12: A1p (A1d) @high-x spin structure with longitudinally polarized p and d

6 GeV Results for d2 Moment

10.

Dynamic twist-3 matrix element

```
\int_0^1 x^2 \{2g_1 + 3g_2\} dx = d_2
```

0.03 MIT Bag O Lattice 0.025 CM Bag SLAC 83 Chiral Soliton RSS 0.02 Sum Rules SANE O² = 2.8 GeV² 42 • SANE $Q^2 = 4.3 \text{ GeV}^2$ ······ elastic ٠ 0.015 0.01 0.005 0 -0.005-0.012.5 3.5 2 3 1.5 4.5 5 5.5 4 $Q^2 [GeV^2]$ Proton from SANE, PRL 122, 022002 (2019)

Interpretations of d_2

- Color Polarizabilities (X.Ji 95, E. Stein et al. 95)
- Average Color Lorentz force (M.Burkardt)

neutron E01-012 (Resonance) 0.01 △ E155x E99-117 + E155x (combined) This Work This Work (with low-x) -0.01 0.001 0 -0.001 -0.02 -0.002Lattice QCD -0.003₭ Sum Rules -0.004 Chiral Soliton -0.03 -0.005 Bag Models Ô -0.006 V RSS (Resonance) 3.5 4.5 5.5 5 Elastic Contribution (CN) -0.04 2 3 5 $Q^2 [GeV^2/c^2]$ Neutron from d_2^n experiment: D.Flay, et.al. PRD.94(2016)no.5,052003

12 GeV d_2^n

proton

12 GeV d₂ⁿ: Color Polarizability/Lorentz Force

- Measurement of g₁ and g₂ structure functions and d₂ moments at 3 GeV² < Q² < 5.5 GeV² for the neutron using a polarized ³He target
- Study quark-gluon correlations (twist-3) and provide a benchmark test of LQCD calculations.

A₁ at High-x: World Data

a clean domain where QCD (and many other models) can make predictions for (the ratio of) structure functions

ratios of pol/unpol pdfs at $x \rightarrow 1$ provide unambiguous, scale invariant, non-perturbative features of QCD

Simple Spin-flavor Decomposition at High-x

Reaching Deeper Valence Quarks Region with 12 GeV

Hall C A₁ⁿ Kinematics

CLAS12 Kinematics

A1n@High-x: Preliminary Results (A₁³He)

RGC@CLAS12 with Longitudinally Polarized proton/deuteron Targets P. Pandey

RGC scheduled for 9 calendar months (240 calender days), data collected for 190 days, 80% of allotted beam time.

Collected data from 06/11/2022 to 03/20/2023 with some breaks due to Magnet power supply failure (firmware issue) and configuration changes.

Proposal ID	Title
E12-06-109	Longitudinal Spin Structure of the Nucleon
E12-06-109A	DVCS on the Neutron with Polarized Deuterium Target
E12-06-119(b)	DVCS on Longitudinally Polarized Proton Target
E12-07-107	Spin-Orbit Correlations with Longitudinally Polarized Target
E12-09-007(b)	Study of Partonic Distributions using SIDIS K Production
E12-09-009	Spin-Orbit Correlations in K Production with Polarized Targets

See G. Matousek's talk

3-d Structure Study @ CLAS12

RG-C Run Group Experiments DVCS with L. Pol. Proton SIDIS with L. Pol. Proton

Run Group C @ CLAS12

- Polarized fixed target experiment (June 2022 March 2023)
 - Dynamically polarized NH₃ (proton) and ND₃ (deuteron) targets
 - Calibration targets C, CH_2 and CD_2
- <u>Physics Goals</u>

DIS inclusive and flavor-tagged spin structure functions

Semi-inclusive DIS (SIDIS) to access **Transverse Momentum Distributions** (TMDs), dihadron production and backward baryon production

Deeply Virtual Compton Scattering (DVCS) & Timelike Compton Scattering (TCS) to access **Generalized Parton Distributions** (GPDs) - Measure target single and beam/target double spin asymmetries in proton and neutron DVCS. Longitudinal beam & target polarizations

е

Polarization configurable run-by-run

G. Matousek

List of RG-C Experiments

G.	M	ato	us	ek

Experiment Title	Key Observables	Preliminary
Longitudinal Spin Structure of the Nucleon	Polarized parton distributions, gluon helicity, higher twist	
DVCS on the neutron with polarized deuterium target	Neutron Compton Form Factors	
DVCS on longitudinally polarized proton target	Helicity dependent cross sections, upgrade precision and coverage of previous CLAS DVCS measurements	\checkmark
Study of partonic distributions using SIDIS K production	Hadron multiplicities, flavor decomposition of nucleon spin dependent quark PDFs	
Spin-Orbit Correlations with longitudinally polarized target	Transverse momentum dependence of valence quark T/L spin distributions, pion SIDIS	\checkmark
Spin-Orbit correlations in K production with polarized targets	Strange sea p_T distributions, kaon SIDIS (complement above)	
Studies of Dihadron Electroproduction in DIS with Longitudinally Polarized Hydrogen and Deuterium Targets	Spin-orbit correlations in hadronization, dihadron fragmentation functions, fracture functions, twist-3 PDFs	
Studies of Single Baryon Production in the Target Fragmentation Region with a Longitudinally Polarized Target	Fracture functions, separation of current/target hadronization	\checkmark

Preliminary Analysis: Pion SIDIS

G. Matousek

$$A_{LL} = \frac{N^+ - N^-}{N^+ + N^-} \rightarrow \left(\frac{1}{f \times P_b \times P_t \times D(y)}\right) \frac{N^+ - N^-}{N^+ + N^-}$$

Beam/target polarization

- Bin-by-bin determination of dilution factors
 - Analyze NH_3 vs. C yields
 - Calculate %-age of proton cross section contribution to $NH_3 = \frac{\chi^2/ndf}{2}$

H.Avakian

Preliminary Analysis: pDVCS on NH₃

G. Matousek

Talk by N. Pilleux

- GPDs give a 3-d partonic picture in terms of longitudinal momentum, transverse spatial position, and their correlations
- pDVCS (NH₃) measurements at RG-C give access to A_{LU}, A_{UL}, A_{LL}
- With **nDVCS** (*ND*₃) \rightarrow Separation of *u*, *d* Compton Form Factors

3-d Structure Study @ Hall A/C

DVCS in Hall A/C SIDIS in Hall C

DVCS high precision cross-section measurements

- High precision program of nucleon 3D structure in Hall A and Hall C
- \blacktriangleright Q² scans of the cross-section up to high values of x_B
- Beam-energy dependence measurements further contraints Compton Form Factors extraction

Helicity-dependent DVCS cross sections

Real and Imaginary parts of CFFs H, \widetilde{H}, E and \widetilde{E}

DVCS off the neutron

C. Camacho

Running experiment in Hall C

Overview of SIDIS Experiments in Hall C

Precision studies using the spectrometers and the high available luminosity of Hall C

- Study of p_T dependence of charged pion and kaon SIDIS (2018)
- Study of charge symmetry violation in charged pion SIDIS (2018)
- Longitudinal/transverse cross sections of neutral pion SIDIS (2023 - 2024)
- Longitudinal/transverse cross sections of charged pion SIDIS (2025 tent.)
- Tagged DIS from meson (conditionally approved)

2.5

2.0

 π^0 SIDIS (online)

1.5 M_x (GeV)

Future Precision 3-d Study with SoLID

SIDIS-TMD Multi-d Mapping Deep-Exclusive Meson Production DDVCS

SoLID-SIDIS: Precision Mapping in Multi-Dimension

SoLID-SIDIS program: Large acceptance, Full azimuthal coverage + High luminosity

- 4-D mapping of asymmetries with precision
- Constrain models and forms of TMDs, Tensor charge, ...
- Lattice QCD, QCD dynamics

32

SoLID Impact on Tensor Charge

Definition

$$\langle P, S | \bar{\psi}_q i \sigma^{\mu\nu} \psi_q | P, S \rangle = g_T^q \bar{u}(P, S) i \sigma^{\mu\nu} u(P, S) \quad g_T^q = \int_0^1 [h_1^q(x) - h_1^{\bar{q}}(x)] dx$$

- A fundamental QCD quantity: matrix element of local operators.
- Moment of transversity distribution
- Valence quark dominant.
- Precision calculations available from lattice QCD.
- Probe new physics combined with EDMs

$$d_n = g_T^d d_u + g_T^u d_d + g_T^s d_s$$

Dyson-Schwinger equation Lattice QCD Models . Phenomenology **Future experiment** ٥. \boldsymbol{g}_T^d g_T^u Wang et al. (2018) Yamanaka et al. (2013) Bhattacharya et al. (2016) Abdel-Rehim et al. (2015) Gockeler et al. (2005) Cloet et al. (2008) Wakamatsu (2007) Pasquini et al. (2005) Gamberg, Goldstein (2001) Schweitzer et al. (2001) Ma, Schmidt (1998) Barone et al. (1997) Schmidt, Soffer (1997) He, Ji (1996) Kim et al. (1996) Kang et al. (2016) Radici et al. (2015) Goldstein et al. (2014) ⊢+⊣ Anselmino et al. (2013) Ye et al. (2017) JLab12 SoLID Baseline **SoLID Projections** -0.5 1.5 0.5 2 2.5 0

Expansion Study of Nucleon to Deuteron

Tensor-TMD: Exploration and Precision Study 3-d Study with JLab Upgrade

Spin 1: Leading twist transverse momentum dependent distributions (TMDs)

	Quark	U (γ ⁺)	L (γ	$\gamma^{+}\gamma_{5})$	Т ($i\sigma^{i+}\gamma_5/c$	5 ^{<i>i</i>+})
	Hadron	T-even	T-odd	T-even	T-odd	T-evei	1	T-odd
	U	f_1						$[h_1^{\perp}]$
	L			$g_{1\mathrm{L}}$		$[h_{1\mathrm{L}}^{\perp}]$		
cured	Т		$f_{1\mathrm{T}}^{\scriptscriptstyle \perp}$	g _{1T}		[<i>h</i> ₁], [<i>h</i>	ել]	
Never measure	LL	f_{1LL}						$[h_{1LL}^{\perp}]$
he perc	LT	$f_{1 m LT}$			g_{1LT}		[<i>h</i> 1]	$_{T}], [h_{1LT}^{\perp}]$
	ТТ	f _{1TT}			g _{1TT}		[<i>h</i> _{1]}	$_{\rm T}$], [$h_{\rm 1TT}^{\perp}$]
	Quark	U	(γ ⁺)		L (γ	⁺ γ ₅)	Τ (<i>iσ</i> ^{<i>i</i>+}	γ_5 / σ^{i+}
	Hadron	T-even	T-o	dd 1	-even	T-odd	T-even	T-odd
	U	f_1						
asured	L			g	1L (g 1)			
b1 meennes	т						$[h_1]$	
and soon at	LL	$f_{1LL}(b_1$)					
	LT							*1
	тт							

J. Poudel

Spin-1 Tensor TMDs at Jefferson Lab

Courtesy of A. Bacchetta (private communication) 2023

• SIDIS Cross-section considering longitudinal polarization of target

$$\frac{d\sigma}{dx \, dy \, d\psi \, dz \, d\phi_h \, dP_{h\perp}^2} = \frac{y^2 \alpha^2}{2(1-\epsilon)xyQ^2} \left(1+\frac{\gamma^2}{2x}\right) \left[F_{UU,T} + \epsilon F_{UU,L} + \sqrt{2\epsilon(1+\epsilon)}\cos\phi_h F_{UU}^{\cos\phi_h} + \epsilon\cos(2\phi_h) F_{UU}^{\cos(2\phi_h)} + \lambda_e \sqrt{2\epsilon(1-\epsilon)}\sin\phi_h F_{LU}^{\sin\phi_h}\right]$$

$$+ \epsilon\cos(2\phi_h) F_{UU}^{\cos(2\phi_h)} + \lambda_e \sqrt{2\epsilon(1-\epsilon)}\sin\phi_h F_{UL}^{\sin\phi_h} + \epsilon\sin(2\phi_h) F_{UL}^{\sin(2\phi_h)}\right]$$

$$+ S_{\parallel}\lambda_e \left\{\sqrt{1-\epsilon^2} F_{LL} + \sqrt{2\epsilon(1-\epsilon)}\cos\phi_h F_{LL}^{\cos\phi_h}\right\}$$

$$Tensor Polarization: + T_{\parallel\parallel} \left\{F_{U(LL),T} + \epsilon F_{U(LL),L} + \sqrt{2\epsilon(1+\epsilon)}\cos\phi_h F_{U(LL)}^{\cos\phi_h}\right\}$$

$$+ \epsilon\cos(2\phi_h) F_{U(LL)}^{\cos(2\phi_h)} + \lambda_e \sqrt{2\epsilon(1-\epsilon)}\sin\phi_h F_{L(LL)}^{\sin\phi_h}\right\}$$

$$F_{U(LL),T} = C[f_{1LL}D_1]$$

$$F_{U(LL)}^{\cos 2\phi_h} = C\left[-\frac{2(\hat{\mathbf{h}} \cdot \mathbf{k_T})(\hat{\mathbf{h}} \cdot \mathbf{p_T}) - \mathbf{k_T} \cdot \mathbf{p_T}}{MM_h}h_{1LL}^{\perp}H_1^{\perp}\right]$$
3.

 Use CLAS12 existing data (RG-C) to find the upper limit of F_{U(LL),T} (data mining)
 Dedicated measurement of F_{U(LL),T} in Hall C
 Precise measurement of F_{U(LL),T}, F^{cos φ_h}_{U(LL)} and *F*^{cos 2φ_h}_{U(LL)} in SoLID

 $\mathsf{T} = \left\langle \textcircled{} = 2 \textcircled{} \right\rangle$

Summary

- □ Highlights of Spin Structure Study @ JLab:
- Exciting results from 3 JLab low-Q spin experiments (spin moments)
 E E = 1 PL 2 PL P + more
 - Γ_1 , Γ_2 , γ_0 , δ_{LT} for p and n: 3 *nature physics*, 1 *PRL*, 2 *PLB*, + *more* (α_{g1})
- Preliminary results on d2n in Hall C: twist-3, q-g correlations, LQCD calculations
- Preliminary results on A1n @ high-x in Hall C: valence behavior
- A1p@CLAS12: data taken 2022
- □ Highlights of 3-d Structure Study @ JLab:
- SIDIS and DVCS with long. pol p/d @ CLAS12 RGC
- DVCS @Hall A/C with JLab12
- SIDIS @Hall C with JLab12
- Future: Precision mapping of 3-d structure @SoLID New: Experimental study of tensor-TMDs