PHENIX Spin Highlights

✓ Nucleon helicity structure
 ✓ Transverse spin phenomena in p+p
 ✓ Polarized p + A

A.Bazilevsky (BNL)

For PHENIX Collaboration

PHENIX Spin @ RHIC

PHENIX Detector

π⁰, γ, η

Electromagnetic Calorimeter: |η|<0.35 Muon Piston Calorimeter: 3.1<|η|<3.9

 π^{\pm} , e, $J/\psi \rightarrow e^+e^-$, $W \rightarrow e$: $|\eta| < 0.35$ Drift, Pad Chambers, VTX ($|\eta| < 1$) Ring Imaging Cherenkov Counter, ToF Electromagnetic Calorimeter VTX

 μ , h[±], J/ $\psi \rightarrow \mu^+ \mu$, W $\rightarrow \mu$: 1.2<| η |<2.4 Muon Id/Muon Tracker FVTX

Relative Luminosity

Beam Beam Counter (BBC) Zero Degree Calorimeter (ZDC)

Local Polarimetry – ZDC & SMD Spin direction control

Non-zero A_{LL} associated with non-zero ΔG !

- Significant contribution from gluon spin to proton spin (at x>0.05) Similar conclusion from other global fits: NNPDF, JAM
- > More A_{LL} data are published: η , $\pi \pm$, $h \pm$, J/ψ , HF e
- Still huge uncertainty in unmeasured region (x<0.05)
 => More RHIC results at highest √s and forward rapidity are coming
 - -> More KHIC results at highest vs and forward rapidity are con
- Sign needs a confirmation (see next slide)
 - => Need cleaner prob, e.g. direct photons

ΔG : Confirm the Sign

Direct photon - a golden channel to probe gluons

PRL130, 251901 (2023)

JAM collaboration: Negative ΔG still allowed

PHENIX:

Clear preference for positive ΔG

 Δq -bar: $W^{\pm} \rightarrow e^{\pm}$, $\mu^{\pm} \frac{1}{2} = \frac{1}{2} (\Delta q + \Delta \bar{q}) + \Delta G + L_z$

 $e^{\pm}: |\eta| < 0.35 \quad \mu^{\pm}: 1.2 < |\eta| < 2.4$

Constrains flavor separated (anti-)quark polarization at high $Q \sim M_W$ at x>0.05, with no fragmentation involved (as in SIDIS)

PRD 98, 032007 (2018)

STAR+PHENIX included

Preference of Positive ubar polarization Negative dbar polarization

Transverse Spin Asymmetries

Large Transverse Spin Asymmetries have been observed in $p^{\uparrow}p$

8

A_N : Highest Vs and pT

PRD90, 012006 (2014)

Collinear (higher twist) pQCD predicts $A_N \sim 1/p_T$?

No fall off is observed out to $p_T \sim 5 \text{ GeV/c}$ STAR showed no fall off up to $\sim 7 \text{ GeV/c}$

A.Bazilevsky, DIS-2024

Naïve collinear pQCD predicts $A_N \sim \alpha_s m_q / p_T \sim 0$ Asymmetries survive at highest \sqrt{s} Non-perturbative regime! Asymmetries of the ~same size at all \sqrt{s} Asymmetries scale with x_F

Transverse Spin Physics

Initial State:

> A_N for jets, direct photons
> A_N for heavy flavor → gluon
> A_N for W, Z, DY

Final State:

- Hadron azimuthal asymmetry in jet
- Hadron pair azimuthal asymmetry (Interference fragmentation function)

Sensitive to correlations **proton spin** – parton **transverse motion**

Not universal between SIDIS & pp

Sensitive to transversity x spin-dependent FF

Universal between SIDIS & pp & e+e-

Quark transversity

 \succ Tensor charge

Parton dynamics3D imaging

Other mechanisms

Diffraction

A_N : Mid-rapidity $\pi 0$ and η

PRD103, 052009 (2021)

Consistent with 0 To $\sim 3 \times 10^{-4}$ precision level at $\pi 0$ low p_T

Sensitive to gluon dynamics

Used to constrain gluon Sivers effect: Anselmino et al, PRD 74 (2006), 094011 D'Alesio et al, JHEP 1509 (2015), 119

A_N : Mid-rapidity $\pi \pm$

PRD105, 032003 (2022)

Flavor sensitivity in initial and final effects $u \rightarrow \pi + vs d \rightarrow \pi$ -

Consistent with zero (as $\pi 0$ results)

A hint for a charge dependence?

A_N : Forward $h\pm$ and η

PRD108, 072016 (2023)

Sizable positive A_N for h+Mix of positive A_N from $\pi+$ and positive from K+ Slightly negative A_N for h-Mix of negative A_N from $\pi-$ and positive from K-Comparison to Twist-3 model Gamberg, Kang, Pitonyak, Prokudin, Phys.Lett.B 770, 242

See D. Loomis talk, WG5

~0 at negative xF Increasing with positive xF Similar to $\pi 0$

> A hint of asymmetry drop at high pT

A_N: Direct Photon

PRL127, 162001 (2021)

- ✓ First direct γ A_N from RHIC
- ✓ ×50 times reduced uncertainty compared to the only prior measurement at E704 (Fermilab)
- Clean prob of initial state effect (no fragmentation)
- ✓ Constraints gluon dynamics within proton (through gluongluon correlation function)

A_N: Heavy Flavor

PRD107, 052012 (2023)

Dominated by gluon-gluon fusion

Used to constrain tri-gluon correlation in the Twist-3 collinear framework

Z.Kang, J.Qiu, W.Vogelsang, F.Yuan, PRD78,114013

Y.Koike, S.Yoshida, PRD84,014026

Comparison of charges provides further sensitivities

First $p^{\uparrow} + A$ data !!!

A_N: Central rapidity

 $\pi 0$ at $|\eta| < 0.35$

PRD107, 112004 (2023)

Very high precision data $\sigma_A \sim 3 \times 10^{-4} (10^{-3})$ at lowest pT in pp (pA) A_N consistent with 0 for all systems To be used to constrain gluon Sivers fct.

A_N: Forward rapidity

h+ at $1.2 < |\eta| < 2.4$

PRL123, 122001 (2019)

PRD108, 072016 (2023)

Theory expects $A_N \sim 1/A^{1/3}$ due to gluon saturation

Z.Kang and F.Yuan, PRD 84, 034019 (2011)

Supported by our data

However:

In this kin. region no sensitivity to gluon saturation is expected Different source of asymmetry? Other nuclear effects?

A_N: Very forward rapidity

n at $|\eta| > 6.8$

PRL 120, 022001 (2018)

- Strong dependence on A and particle production in other rapidity regions
 - > Likely multiple mechanisms contribute

One pion exchange (OPE):Electromagnetic interaction (UPC):B.Kopeliovich et alG.Mitsuka, PRC95 044908PRD 84, 114012FRC95 044908

Correlation with particle production in other rapidities, and different A and Vs will help to isolate different channels

A_N: Very forward rapidity

n at $|\eta| > 6.8$

Magnitude increasing with pT Weak xF dependence Model: UPC+OPE OPE dominates in pp

UPC dominates in pAu

A.Bazilevsky, DIS-2024

 $0.55 < x_F < 0.70$

 $0.85 < X_{c} < 1.00$

d

p_[GeV/c]

Summary

How do gluon contribute to the proton Spin
 Non-zero positive (in the limited x-range) and comparable to (or larger than) quark contribution
 Direct photons removed the sign uncertainty

- What is the flavor structure of polarized sea in the proton $A_L(W)$ contributes to $\Delta \overline{u}$ and $\Delta \overline{d}$
- What are the origins of transverse spin phenomena in QCD $A_N(\pi^0, \eta, \pi^{\pm}, h^{\pm}, \gamma, \text{Heavy Flavor}) => qg \text{ and } ggg \text{ correlations}$
- First (and the only) p[^]A data !
 A wealth of exciting results awaiting for theoretical interpretation

Proton spin decomposition

Parton dynamics 3D imaging

Probing nuclear matter effects

Backup

From DIS to pp:

Probes ΔG :

Q² dependence of structure fct

Photon-gluon fusion

(Anti-)quark flavor separation:

Through fragmentation processes

Probes ΔG :

Directly from gg and qg scattering

(Anti-)quark flavor separation: Through $ud \to W^+$ and $ud \to W^-$

Complementary approaches

Probes lower x down to $\sim 10^{-3}$

 γ , η , $\pi \pm$, $h \pm$, heavy flavor through e and μ , h-h, γ -h

W: Central vs Forward region

Clear Jacobian peak at central rapidities

Suppressed/No Jacobean peak at forward rapidities

A_N: Forward rapidity

PRD 98, 012006 (2018)

J/ ψ at 1.2<| $\eta|$ <2.4

 J/ψ production sensitive to gluon distribution

 A_N sensitive to J/ψ production mechanism

F.Yuan, PRD78, 014024:

For non-zero gluon Sivers, A_N vanishes in color octet model, but survives in color singlet model

```
In p+p and p+A1: A_N \sim 0
```

In p+Au: trends to $A_N < 0$

??

$J/\psi A_N$

 $\Box J/\psi A_N$ is sensitive to the production mechanisms

- Assuming a non-zero gluon Sivers function, in pp scattering, $J/\psi A_N$ vanishes if the pair are produced in a color-octet model but survives in the color-singlet model
- Feng Yuan, Phys. Rev D78, 014024(2008)

Science

$\pi 0 A_N$ in pA

Probing gluon saturated matter, Color Glass Condensate (CGC) with polarized protons

Kang, Yuan: PRD84, 034019 Kovchegov, Sievert: PRD86, 034028

- Unique RHIC possibility p[↑]A
- Synergy between CGC based theory and transverse spin physics
- Suppression of A_N in p[↑]A provides sensitivity to Q_s
- Data already collected in Run-2015!

A_N: Forward rapidity

S.Benic and Y.Hatta, PRD99, 094012 (Twist-3 fragmentation + gluon saturation)

" $< p_T > 2.9 \ GeV/c$ is too hard to be sensitive to the saturation scale $Q_S^{Au} \sim 0.9 \ GeV$ This makes the PHENIX result even more striking."

Different source of hadron A_N ?

Other nuclear effects?

Any connection with QGP formation in pA?

