New Neutron Structure Function Extraction from Global Inclusive Proton and Deuteron Data

Shujie Li

with many thanks to my **CTEQ-JLab** collaborators: A. Alberto, M. Cerutti, I. Fernando, X. Jing, J. Owens, S. Park, C.E. Keppel, W. Melnitchouk, P. Monaghan

> DIS2024@Grenoble, France April 9, 2024

arXiv:2309.16851 accepted by PRD

Extraction of the neutron F_2 structure function from inclusive proton and deuteron deep-inelastic scattering data

S. Li^(a),^{1,2} A. Accardi^(a),^{3,4} M. Cerutti,^{3,4} I. P. Fernando^(a),⁵ C. E. Keppel,⁴ W. Melnitchouk^(a),⁴ P. Monaghan,⁶ G. Niculescu^(a),⁷ M. I. Niculescu^(a),⁷ and J. F. Owens^(a)
¹University of New Hampshire, Durham, New Hampshire 03824, USA
²Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
³Hampton University, Hampton, Virginia 23668, USA
⁴Jefferson Lab, Newport News, Virginia 23606, USA
⁵University of Virginia, Charlottesville, Virginia 23606, USA
⁶Christopher Newport University, Newport News, Virginia 23606, USA
⁷James Madison University, Harrisonburg, Virginia 22801, USA
⁸Florida State University, Tallahassee, Florida 32306, USA
(Received 22 October 2023; accepted 14 March 2024)

- Global fit with a focus on fixed-target data from Jefferson Lab
 - Large-x, low- $Q^2 \rightarrow TMC$, HT
 - \circ Nuclear dynamics \rightarrow p,n motions, off-shell PDFs
- F2(n) extracted from global data, and also available as LHAPDF grids for
 - experiment result projection
 - "free" neutron data as input to other PDF fitter
 - nuclear PDF and neutrino scattering

CJ Global QCD fits

 pQCD factorization & universality: can fit PDFs to a variety of hard scattering data

- Hadron-hadron collisions
 - \rightarrow Jets
 - → Electro-weak boson production
- Electron-proton DIS
- Electron-Deuteron DIS

For the latest status, see Matteo Cerutti's talk, Wed noon, WG1

• Large-x PDFs: interplay of observables

D0, CDF asymmetries

CJ Global QCD fits

- 1000+ data points
 - including high x, low Q² data from JLab
 - W²>3.0 GeV², Q²>1.69 (GeV/c)²
- Lower-energy / nuclear focus:
 - Full treatment for HT, TMC, nuclear smearing, and offshellness
 - → Deuteron Fermi motion and binding with Weak Binding
 Approximation

CJ15: Phys.Rev.D 93, 114017 (2016) CJ22: Phys.Rev.D 107, 113005 (2023)

$$F_{2d}(x,Q^2) = \int \frac{dz}{z} dp_T^2 \mathcal{K}(z,p^2,\gamma) \left| \psi_{N/d}(|\vec{p}|) \right|^2 F_{2N}(x/z,Q^2,p^2)$$
kinematic and
"flux" factors
Nucleon wave function

ShujieLi@lbl.gov

DIS2024

bound, off-shell nucleon See W. Henry's talk

Impact of Large-x Deuteron Data

"Power of precision"

JLab E12-10-002 data

Impact on PDF uncertainties

Neutron F₂ Extraction

• Basic idea:

 $\widehat{F}_2^{n(0)}(x,Q^2) = \frac{2\,\widehat{F}_2^{d(0)}(x,Q^2)_{\exp}}{R_{d/N}^{\text{CJ}}(x,Q^2)} - \,\widehat{F}_2^{p(0)}(x,Q^2)_{\exp}$

• But also:

- P, d data matching
- Data cross normalization
 - \rightarrow Based on CJ15 PDFs
 - → Refit of norm,
 Correlated errors
- Bin-centered for applications such as Isosinglet moment

Reference: S. Li et. al. arXiv:2309.16851, accepted by PRD

0 ...

F2 neutron datasets and grids available at https://github.com/JeffersonLab/CJ-database/

DIS2024

F₂ n/p Extraction

- Similar idea, but using
 - d/p data

$$\widehat{R}_{n/p}^{(0)} \equiv \frac{2 \, \widehat{R}_{d/p}^{\exp,(0)}}{R_{d/N}^{\rm CJ} - 1}$$

• n/d BONuS data

$$\widehat{R}_{n/p}^{(0)} \equiv \frac{\widehat{R}_{n/d}^{\mathrm{exp},(0)} \ R_{d/N}^{\mathrm{CJ}}}{1 - \widehat{R}_{n/d}^{\mathrm{exp},(0)} \ R_{d/N}^{\mathrm{CJ}}}$$

Reference: S. Li et. al. arXiv:2309.16851, accepted by PRD

F2 neutron datasets and grids available at https://github.com/JeffersonLab/CJ-database/

Uncertainties

- Experimental uncertainties
 - Statistical
 - Systematics (correlated/uncorrelated)
- theoretical systematics (PDF uncertainties) using 2* 24 (=19 PDF + 2 off-shell + 3 higher-twist parameters) eigen-PDF sets:
 - → Normalization + correlated shifts uncertainties
 - \rightarrow Nuclear correction (d/(p+n)) uncertainties

# fit parameters				
LAMBDA	0.22680	0.0000		
a0uv	2.4067	0.0000		
aluv	0.61537	0.19856E-01		
a2uv	3.5433	0.12414E-01		
a3uv	0.0000	0.0000		
a4uv	3.4609	0.42903		
a5uv	0.0000	0.0000		
a0dv	24.684	0.0000		
aldv	1.1595	0.33533E-01		
a2dv	6.5514	0.15936		
a3dv	-3.5030	0.86332E-01		
a4dv	4.6787	0.14209		
a5dv	0.0000	0.0000		
a0ud	0.14658	0.50348E-02		
alud	-0.20775	0.37551E-02		
a2ud	8.3286	0.19114		
a3ud	0.0000	0.0000		
a4ud	14.606	1.2151		
a5ud	0.0000	0.0000		
a0du	35712.	0.0000		
aldu	4.0249	0.74070E-01		
a2du	20.154	0.87862		
a3du	17.000	0.0000		
a4du	51.156	10.239		
a0g	45.542	0.0000		
alg	0.60307	0.31164E-01		
a2g	6.4812	0.96748		
a3g	-3.3064	0.13418		
a4g	3.1721	0.31376		
a5g	0.0000	0.0000		
kappa	0.40000	0.0000		
a6dv	-0.36005E-02	0.66324E-03		
a7dv	2.0000	0.0000		
off1	-3.6735	1.5278		
off2	0.57717E-01	0.14842E-01		
ht1	-3.2874	0.26061		
ht2	1.9274	0.10524		
ht3	-2.0701	0.19888E-01		
ht4	0.0000	0.0000		

Data - Fit Residual After Cross-normalization

10.1103/RevModPhys.92.045003

Proton

Application: non-singlet moments

F2 from data

Nachtmann moment M^{NS}

$$M_2^{p-n}(Q^2) = \int_0^1 \mathrm{d}x \, \frac{\xi^3}{x^3} \left[\frac{3+9r+8r^2}{20} \right] F_2^{p-n}(x,Q^2)$$

$$\xi = 2x/(1+r)$$
 $r = \sqrt{1+4M^2x^2/Q^2}.$

accounts for kinematic TMC.

It connects to **non-singlet moments** by

$$\frac{3}{C_2}M_2^{\rm NS} = \langle x \rangle_{u^+ - d^+} + {\rm HT}$$

Application: non-singlet moments

F2 from data

At given Q²:

• **x<0.1**: fit according to Reggie theory

$$F_2^p - F_2^n = Ax^{\alpha}$$

- x in measured range: binned and interpolated
- **High x:** two theory models, CJ15 and F1F209, cutoff at pion threshold

Application: non-singlet moments

F2 from data

Moments from LQCD

$$\langle x
angle_{u^+-d^+} = \int \mathrm{d}x \, x \left[u(x) + ar{u}(x) - d(x) - ar{d}(x)
ight]$$

Application: isoscalar corrections

$$f_A^{\text{iso}} \approx \left(\frac{A}{2}\right) \frac{1 + F_2^n / F_2^p}{Z + N F_2^n / F_2^p}$$

Correction depends on x and Q², important for EMC effect and neutrino scattering

DIS2024

Open Database on Github

CJ Unpolarized DIS Database Homepage @

Reference: arXiv:2309.16851.

See also

- CTEQ-JLab collaboration website.
- note for reduced cross section and F2 calculation.

World DIS data tables 2

World **proton** and **deuteron** data of unploarized DIS cross sections, F2 structure functions, and the longitudinal to transverse cross section ratio R are collected or extracted from various experiments. Data were collected for the CJ global fit and related analysis. Now open for general use. See details under the data directory.

Neutron F2 extraction 2

Based on the collected F2 data, we performed a data-driven extraction of **neutron F2** and **neutron-to-proton F2n/F2p** ratio within the CJ15 framework (see eq. 7-9 in reference for details). Data from all experiemnts are cross-normalized and combined into a single Excel file, both in the original kineamtics, as well as rebinned in Q^2. Check the <u>f2n</u> directory.

Structure function grids 2

Within CJ framework, we calculated various structure functions (F2, F3, FL, etc) at given x, Q^2 grids. Results are provided under folder <u>SFN_grids</u> in the <u>LHAPDF</u> format. An example plotting script is available at scr/plot_sfn.py

LHAPDF grids on F2,FL, F3 with gamma, gz, Z F2 come with HT

https://github.com/JeffersonLab/CJ-database

Experiment	σr	F2	R
SLAC-Whitlow	p: <u>10014</u>	p: <u>10010</u>	p: <u>10064</u>
	d: <u>10015</u>	d: <u>10011</u>	d: <u>10065</u>
	d/p: 10034	d/p (*): <u>10034</u>	
SLAC-Whitlow(rebinned)		rebinned p: 10012	
		rebinned d: 10013	
SLAC-E140			d: 10066
SLAC-E140x	p: <u>10037</u>	p: <u>10035</u>	p: 10067
	d: <u>10038</u>	d: <u>10036</u>	d: 10068
NMC	p: <u>10022</u>	p: <u>10020</u>	
	d: <u>10040</u>	d: <u>10039</u>	
	d/p:10021	d/p (*): <u>10021</u>	
BCDMS	p: <u>10018</u>	p: <u>10016</u>	p: <u>1006</u>
	d: <u>10019</u>	d: <u>10017</u>	d: 10070
JLab E06-009	d: <u>10042</u>	d: <u>10041</u>	d: <u>1007</u>
(includes E04-001, E02-109)			
JLab E94-110	p: <u>10044</u>	p: <u>10043</u>	p: <u>10074</u>
JLab E03-103	p:10047	p:10045	
	d:10048	d:10046	
JLab E99-118	p: <u>10052</u>	p: <u>10049</u>	p: (A)
	d: <u>10053</u>	d: <u>10050</u>	p-d: (A)
	d/p:10054	d/p:10051	
JLab JLCEE96	p: <u>10055</u>	p: <u>10072</u>	
	d: <u>10056</u>	d: 10073	
JLab E00-116	p: 10003	p: 10001	
	d: 10004	p: 10002	
CLAS6	p: <u>10059</u>	p: <u>10057</u>	
	d: <u>10060</u>	d: <u>10058</u>	
BONUS		n: <u>10061</u>	
		n/d: 10033	
HERA I+II	p: <u>10026 - 10032</u>		
HERMES	p: 10007	p: 10005	
	d: 10008	d: 10006	
	d/p: 10009		
E665		p: <u>10062</u>	
		d: 10063	

Outlook https://github.com/JeffersonLab/CJ-database/

- We provided a **data-driven extraction of F2n** from Deuteron data, with our best knowledge of HT and nuclear effects
- World data on F2p and d are sorted into a database with clear documentation on uncertainties
- F2n data sets are available, can be used e.g. as input to other global analysis
- F2 grids in LHAPDF format, can provide isoscalar corrections with uncertainties

- Next step: continue the coordinated Theory-Experiment Effort:
 - Interplay of HT and off-shell
 - \circ Strange sea with LHC data
 - NNLO
 - Structure function with CJ22 and updated uncertainties

Thank you!

Backups

raw F_2^p Data/CJ

modified+normed F_2^p Data/CJ

Data Selection

- 1. DIS cuts:
 - a. $Q^2 > 1.691 \text{ GeV}^2/c^2$
 - b. $W^2 > 3.5 \text{ GeV}^2$

- 2. **Within each experiment**, we match the proton and deuteron data points by requiring:
 - a. same beam energy,
 - b. $|\mathbf{x}_{\text{proton}} \mathbf{x}_{\text{deuteron}}| < 0.01,$ c. $|\mathbf{Q}^2_{\text{proton}} - \mathbf{Q}^2_{\text{deuteron}}| < 1\%.$

Experiments	# of Proton F2 Data Points	# of Deuteron F2 Data Points	# of Constructed Neutron Points
SLAC-Whitlow ^[2]	564	582	470
BCDMS	351 ^[3]	254 ^[4]	254
HERMES ^[5]	45	45	45
JLab E-00-116 ^[6]	136	136	120
NMC ^[7]	275	275	258
SLAC-E140x ^[8]	9	13	9
JLab E-03-103 ^[9]	37	69	37
JLab CLAS6	609 ^[10]	1723 ^[11]	0
JLab E-94-110 ^[12]	112	0	0
JLab E-06-009 ^[13]	0	79	0
JLab E-99-118 ^[14]	2	2	2

CJ15 and AKP: d/u to free nucleons

CJ15: PRD 93 (2016) 114017 AKP: PRD 96 (2017) 054005 (see also 2203.07333)

 $\frac{F_{2n}}{F_{2p}} \approx \frac{1+4d/u}{4+d/u}$

CJ15 and AKP: d/u to free nucleons

• AKP has smaller *d/u* but bigger *n/p* ???

- Not possible at Leading Twist!
- $\circ \rightarrow$ Large HT contributions to high-*x n/p* ratio

Norm. shift: original 2.5%, here 1.3%

Varying R_{ht} didn't change the n/p shape at high

 \Rightarrow n/p is different in deuteron and A=3 nuclei?

 \Rightarrow More likely: larger than expected isospin dependence in nuclear effects

Iso-vector nuclear effect?

C. Cocuzza et. al. (JAM), arxiv: 2104.06946

DIS2024

CJ's answer: (very likely) the interplay b/w HT and offshell HT systematics & offshell corrections Paper in progress

• Additive vs. Multiplicative

$$F_2(x,Q^2) = F_2^{LT}(x,Q^2) + \frac{H(x)}{Q^2}$$
$$F_2(x,Q^2) = F_2^{LT}(x,Q^2) \left(1 + \frac{C(x)}{Q^2}\right)$$

- Isospin, Q^2 evol. not independent $\widetilde{H}_{p,n}(x,Q^2) = C(x) F_{2p,n}^{LT}(x,Q^2)$
- Non-negligible large-x bias

$$\frac{n}{p} \xrightarrow[x \to 1]{} \begin{cases} \frac{1}{4} + 3\frac{H}{u} & \text{add. } p = n \\ \frac{1}{4} + \frac{H}{u} & p \neq n \\ \frac{1}{4} & \text{mult. } p = n \end{cases}$$

HT systematics & offshell corrections

• Additive vs. Multiplicative

AKP: <u>https://arxiv.org/pdf/2203.07333.pdf</u> Polynomial paramterization, $c_0 = -0.16\pm 0.11$, $c_1 = -2.04\pm 0.73$, and $c_2 = 4.86\pm 1.13$ $N(x - x_0)(x - x_1)(1 + x_0 - x)$

Parameter	CJ15	CJ22
N	$\textbf{-3.6735} \pm \textbf{1.5278}$	-5.3600 ± 1.5674
x_0	$0.57717E091 \pm 0.14842E\text{-}01$	$0.70549\text{E-}01\pm0.44990\text{E-}03$
x_1	0.36419	0.42527

Bonus cross-checks

• **BONuS: Tagged proton DIS** measurements

