

The forward η meson cross section and transverse single spin asymmetry at PHENIX

Devon Loomis for the PHENIX Collaboration

Polarized Physics Runs at PHENIX

PH棌ENIX

Year	System	$\sqrt{s}(\mathrm{GeV})$	Polarization Direction	Recorded Luminosity ($\mathbf{p b}^{-1}$)
2006	$p+p$	62.4	transverse	0.02
			longitudinal	0.08
		200	transverse	2.7
			longitudinal	7.5
2008	p+p	200	transverse	5.2
2009	$p+p$	200	longitudinal	16
		500		14
2011	p+p	500	longitudinal	18
2012	$p+p$	200	transverse	9.7
		510	longitudinal	32
2013	p+p	510	longitudinal	155
2015	$p+p$	200	transverse	60
	$p+A u$			1.27
	$\mathrm{p}+\mathrm{Al}$			3.97

PHENIX Detector

Midrapidity

- $\quad|\eta|<0.35$

Tracking: drift chamber (DC), pad chambers (PC)

- RICH
- PID for electrons and charged pions
- TOF
- PID for low momentum charged particles (pions,kaons,protons)
- EMCal
- Energy deposits of photons and electrons

Forward rapidity

- Muon Piston Calorimeter (MPC)
- $\quad \pi^{0}$ and η identification through $\pi^{0} \rightarrow \gamma \gamma$ and $\eta \rightarrow \gamma \gamma$
- $\sim 3.0<|\eta|<3.8$
- Beam-Beam Counter (BBC)
- Collision vertex
- Minimum bias trigger

Muon Piston Calorimeter

- Forward electromagnetic calorimeter
- MPC has 196 (220) towers of lead tungstate scintillating crystal in South (North) arm
- High energy photons are detected in MPC when they shower into electrons, positrons, and photons from a combination of pair production and bremsstrahlung
- Clusters are formed from a central tower with local energy maximum and a group of surrounding towers containing some energy of the shower
- MPC dedicated trigger (MPC4x4)
- Define groups of 4×4 towers as tiles (72 tiles in each arm)
- MPC4x4 trigger fires when the ADC sum of towers in at least one tile exceeds threshold

Run-09 (2009) Forward η meson Cross Section

Accessing collinear η FFs with forward cross section

In $\mathrm{p}+\mathrm{p}$ collisions, inclusive hadronic cross sections directly access quark and gluon fragmentation

$$
d \sigma_{p p} \propto f_{a}\left(x_{a}\right) f_{b}\left(x_{b}\right) d \sigma^{a b \rightarrow c X} D_{c}^{h}\left(z_{c}\right)
$$

Only one existing set of η meson fragmentation functions (FFs)

New inputs for a potential updated η FF analysis

Experiment	Observable	$\sqrt{s}(\mathrm{TeV})$	Pseudorapidity
PHENIX	$d \sigma_{p p \rightarrow \eta X}$	0.2	Forward
PHENIX	$d \sigma_{p p \rightarrow \eta X}$	0.5	Forward
PHENIX	$d \sigma_{p p \rightarrow \eta X}$	0.2	Midrapidity
PHENIX	$d \sigma_{p p \rightarrow \eta X}$	0.51	Midrapidity
ALICE	$d \sigma_{p p \rightarrow \eta X}$	2.76	Midrapidity
ALICE	$d \sigma_{p p \rightarrow \eta X}$	7	Midrapidity
ALICE	$d \sigma_{p p \rightarrow \eta X}$	8	Midrapidity
STAR	η / π^{0}	0.2	Midrapidity

PRD 83032001 (2011) In progress Eur. Phys. J.C (2017) 77:339 Phys. Lett. B717 (2012) 162 Eur. Phys. J.C (2018) 78:263 PRC 81064904 (2010)

Forward η meson cross section

$$
E \frac{d^{3} \sigma}{d p^{3}}=\frac{1}{\mathcal{L}} \frac{1}{\mathcal{B} \mathcal{R}_{\eta \rightarrow \gamma \gamma}} \frac{1}{2 \pi p_{T}} \frac{\Delta N^{\text {meas }}}{\epsilon_{\text {trig }} \epsilon_{\text {reco }} \Delta p_{T} \Delta \eta}
$$

\square Cross section is binned in p_{T} and integrated over pseudorapidity $(3.0<|\eta|<3.8)$

- Minimum Bias $p_{T}: 1-4.5 \mathrm{GeV} / \mathrm{c}$
\square MPC4x4 trigger $\mathrm{p}_{\mathrm{T}}: 3.5-6.5 \mathrm{GeV} / \mathrm{c}$
- Measured independently for each MPC Arm
- 5 inputs into cross section
$\square \quad \mathrm{BR}_{\eta \rightarrow \gamma}=0.3941 \pm 0.002$
\square Integrated Luminosity: $\mathscr{L}_{\mathrm{MB}}=5.52 \mathrm{nb}^{-1} \quad \mathscr{L}_{4 \times 4 \mathrm{~A}}=9.26 \mathrm{pb}^{-1}$
- Yields
- Reconstruction efficiency
- Trigger Efficiency

Forward η meson cross section

Yields

- $\quad \eta \rightarrow \gamma \gamma$ reconstructed as pairs of photon clusters in the MPC
- Invariant mass given by

$$
M=\sqrt{4 E_{1} E_{2}} \sin \frac{\theta}{2}
$$

- Fit invarıant mass distrıbutions by $\Phi(x)=a f(x ; \alpha, \beta)+\frac{N}{\sqrt{2 \pi \sigma^{2}}} \exp \left[-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^{2}\right]$ Gamma distribution background Gaussian signal

$$
f(x ; \alpha, \beta)=\frac{x^{\alpha-1} e^{\beta x} \beta^{\alpha}}{\Gamma(\alpha)}
$$

- Background also estimated using Gaussian Process Regression
- Systematic uncertainty from difference in yields between methods

Forward η meson cross section

Corrections

Trigger Efficiency

- Minimum Bias
- Data driven using MPC triggered dataset $\epsilon_{\text {trrig }}^{M B}=\frac{N_{M B M M P C}^{\eta}}{N_{M P C}^{\eta}}=0.92 \pm 0.04\left(\right.$ uniform in $\left.\mathrm{p}_{\mathrm{T}}\right)$
- MPC4x4 trigger
- Find MPC4x4 ADC sum threshold by matching the single cluster efficiencies of data and full event simulations
- Use ADC sum threshold on single η meson simulations to find trigger efficiency vs. p_{T}

$$
\begin{aligned}
& \epsilon_{4 x 4 a}^{\eta}\left(p_{T}^{r e c o}, \Theta\right)=\frac{\sum N^{r e c o}\left(p_{T}^{r e c o}\right) \times \Theta\left(\theta_{c l 1,4 x 4 i d=(i, j, k, l)}(A D C), \theta_{c l 2,4 x 4 i d=(i, j, k, l)}(A D C)\right)}{\sum N^{r e c o}\left(p_{T}^{r e c o}\right)} \\
& \text { 1ction Efficiency }
\end{aligned} \theta_{c l, i}=\left\{\begin{array}{ll}
1 & \text { if } A D C_{c l, i}>A D C\left(\epsilon_{\text {thresh }}\right) \\
0 & \text { if } A D C_{c l, i}<A D C\left(\epsilon_{\text {thresh }}\right)
\end{array}\right) .
$$

Reconstruction Efficiency

Forward η meson cross section

- First measurement of η meson cross section at forward rapidity at 500 GeV
- Cross checks
- North and South MPC cross sections agree
- Minimum bias and MPC4x4 triggered cross sections agree in overlap region $\left(3.5<\mathrm{p}_{\mathrm{T}}<4.5 \mathrm{GeV} / \mathrm{c}\right)$
- Systematic uncertainties
- Uncorrelated: yield extraction, mixed event background subtraction
- Correlated: MPC energy scale, trigger efficiency, reconstruction efficiency, cluster merging
- Consistent with NLO pQCD using CT18 PDFs and AESSS η meson fragmentation functions

Run-12 (2012) Forward η meson A_{N}

Transverse Single Spin Asymmetries $\left(\mathrm{A}_{\mathrm{N}}\right)$

- In transversely polarized $\mathrm{p}+\mathrm{p}$ collisions, the cross section is modified by an azimuthal modulation

$$
d \sigma=(d \sigma)_{0}[1+\epsilon(\phi)], \quad \epsilon(\phi)=P_{Y} A_{N} \cos \phi
$$

- Transverse single spin asymmetries quantify this modulation as a left-right asymmetry in particle production

$$
A_{N}=\frac{d \sigma^{\uparrow}-d \sigma^{\downarrow}}{d \sigma^{\uparrow}+d \sigma^{\downarrow}} \sim \frac{d \sigma_{L}-d \sigma_{R}}{d \sigma_{L}+d \sigma_{R}}
$$

- Many measurements have shown strikingly large A_{N} (up to 40%) that can't be described by leading twist collinear factorization
- To describe large A_{N}, one must go to sub-leading twist or introduce the transverse momentum dependent (TMD) formalism

MICHIGAN

Beyond leading twist collinear factorization

- Transverse momentum dependent (TMD) distributions
- Nonperturbative transverse momentum dependence in the leading twist PDFs or FFs
\square TMD PDFs describe the spin-momentum correlations of the initial state proton and a constituent parton
- TMD FFs describe the spin-momentum correlations of the final state hadron and the fragmenting parton
- Twist-3 collinear factorization
- Interference between the leading twist process and a process with an additional gluon connecting the hard scattering to a nonperturbative region

$$
\begin{aligned}
A_{N} & \propto \sum_{a, b, c} \frac{\phi_{a / A}^{(3)}\left(x_{1}, x_{2}, \overrightarrow{s_{\perp}}\right)}{\text { Sivers like }} \otimes \phi_{b / B}\left(x^{\prime}\right) \otimes \hat{\sigma} \otimes D_{c \rightarrow C}(z) \\
& +\sum_{a, b, c} \delta q_{a / A}\left(x, \overrightarrow{s_{\perp}}\right) \otimes \phi_{b / B}^{(3)}\left(x_{1}^{\prime}, x_{2}^{\prime}\right) \otimes \hat{\sigma^{\prime}} \otimes D_{c \rightarrow C}(z) \\
& +\sum_{a, b, c} \delta q_{a / A}\left(x, \overrightarrow{s_{\perp}}\right) \otimes \phi_{b / B}\left(x^{\prime}\right) \otimes \hat{\sigma^{\prime \prime}} \otimes \frac{D_{c \rightarrow C}^{(3)}\left(z_{1}, z_{2}\right)}{\text { Collins like }}
\end{aligned}
$$

TMD PDFs

Twist-3 ETQS (qgq) function

Forward η meson A_{N}

- $\quad \mathrm{p}^{\uparrow}+\mathrm{p} \rightarrow \mathrm{h}+\mathrm{X}$ at forward rapidity accesses high x_{F} region where large nonzero asymmetries have been measured
- Single scale process dominated by valence quark interactions -> probe of twist-3 ETQS qgq correlator
- Recent phenomenological work suggests that A_{N} for inclusive pions is dominated by Collins-like twist-3 fragmentation term [PRD 89, 111501(R) (2014)]
- Comparing to forward $\pi^{0} \mathrm{~A}_{\mathrm{N}}$ can highlight potential contribution from strange quarks
- Previous measurements hint that ηA_{N} could be larger than $\pi^{0} A_{N}$

Forward η meson A_{N}

PH涼ENIX
Raw asymmetries

$$
A_{N} \cos \phi=\frac{1}{P_{Y}} \epsilon(\phi)
$$

- Square root method (geometric mean between left and right side of detector)

$$
\epsilon_{\text {sqrt }}(\phi)=\frac{\sqrt{N_{L}^{\uparrow} N_{R}^{\downarrow}}-\sqrt{N_{L}^{\downarrow} N_{R}^{\uparrow}}}{\sqrt{N_{L}^{\uparrow} N_{R}^{\downarrow}}+\sqrt{N_{L}^{\downarrow} N_{R}^{\uparrow}}}
$$

- Relative luminosity method

$$
\epsilon_{\text {pol }}(\phi)=\frac{N_{L}^{\uparrow}-\mathcal{R} N_{L}^{\downarrow}}{N_{L}^{\uparrow}+\mathcal{R} N_{L}^{\downarrow}}
$$

Forward η meson A_{N}

Background correction

- Backgrounds underneath the eta meson peak are corrected by

$$
A_{N}=\frac{A_{N}^{\text {peak }}-r A_{N}^{b k g}}{1-r}
$$

- Background fraction r is determined by fits to the invariant mass distributions and the background asymmetries are the weighted mean of the asymmetries in the low mass and high mass sidebands

DIS2024

Forward η meson A_{N}

- Large asymmetries up to 40% at high x_{F}
- Asymmetries consistent with zero at negative x_{F}
- Increase in A_{N} from low to intermediate p_{T} and flattening out at high p_{T}

Forward η meson A_{N}

- Agreement between 2008 and 2012 PHENIX data within statistical and systematic uncertainties
- This additional statistically independent measurement should improve the existing statistical uncertainties of the overall PHENIX ηA_{N} by $\sim \sqrt{2}$

DIS2024

Forward η meson A_{N}

- Twist-3 calculations predict decrease in A_{N} of inclusive light hadrons at high $\mathrm{x}_{\mathrm{F}}+$ high p_{T} $\square \quad$ PRD 83, 114024 (2011)
$\square \quad \mathrm{PRD} 89,111501(\mathrm{R})(2014)$
- A potential hint of this decrease can be seen when separating the ηA_{N} vs. p_{T} into intermediate $\mathrm{x}_{\mathrm{F}}\left(0.2<\mathrm{x}_{\mathrm{F}}<0.6\right)$ and high $\mathrm{x}_{\mathrm{F}}\left(0.6<\mathrm{x}_{\mathrm{F}}<0.8\right)$ regions

TMD region
Twist-3 region

Summary

PH棌ENIX
\square The forward η meson cross section and transverse single spin asymmetry measurements probe the unpolarized and polarized structure of the proton
T. The recent measurement of the PHENIX Run 9 forward η meson cross section can be used in a future improved global fit to the η meson fragmentation functions

- The PHENIX Run 12 forward η meson A_{N} should reduce the existing PHENIX η meson A_{N} statistical uncertainty by a factor of $\sim \sqrt{2}$
- Explore the differences between the η and $\pi^{0} \mathrm{~A}_{\mathrm{N}}$
- Access to twist-3 correlators

Backup

Systematics for forward η meson cross section

- MPC energy scale
- Yield fits to invariant mass distributions
- Mixed event background subtraction
- Reconstruction efficiency GEANT
- Trigger efficiencies
- Cluster merging at high p_{T}

Systematics for forward η meson A_{N}

- Square root vs. relative luminosity method
- Background fraction fits to invariant mass distributions
- Bunch shuffling

Polarimetry at RHIC

PH涼ENIX

- pC polarimeters
- Proton-carbon elastic scattering in the Coulomb-nuclear interference region
- Sizable A_{N} in process with large cross section and weak \sqrt{s} dependence
- Beam polarization measurements several times per fill

$$
P_{B}=\frac{1}{A_{N}} \frac{\sigma^{\uparrow}-\sigma^{\downarrow}}{\sigma^{\uparrow}+\sigma^{\downarrow}}
$$

- Absolute H -jet polarimeter

Side View
NIMA 499 (2003) 392-414

2012 RHIC Polarization

Dominant partonic processes at PHENIX

Reaction	Dom. partonic process	probes	LO Feynman diagram
$\vec{p} \vec{p} \rightarrow \pi+X$	$\begin{aligned} & \vec{g} \vec{g} \rightarrow g g \\ & \vec{q} \vec{g} \rightarrow q g \end{aligned}$	Δg	
$\vec{p} \vec{p} \rightarrow \mathrm{jet}(\mathrm{s})+X$	$\begin{aligned} & \vec{g} \vec{g} \rightarrow g g \\ & \overrightarrow{q g} \rightarrow q g \end{aligned}$	Δg	(as above)
$\begin{aligned} & \vec{p} \vec{p} \rightarrow \gamma+X \\ & \vec{p} \vec{p} \rightarrow \gamma+\text { jet }+X \\ & \vec{p} \vec{p} \rightarrow \gamma \gamma+X \end{aligned}$	$\begin{aligned} & \overrightarrow{q g} \rightarrow \gamma q \\ & \vec{q} g \rightarrow \gamma q \\ & \vec{q} \vec{q} \rightarrow \gamma \gamma \end{aligned}$	$\begin{gathered} \Delta g \\ \Delta g \\ \Delta q, \Delta \bar{q} \end{gathered}$	
$\vec{p} \vec{p} \rightarrow D X, B X$	$\vec{g} \vec{g} \rightarrow c \bar{c}, b \bar{b}$	Δg	

η meson cross sections

$\square \quad 200 \mathrm{GeV}$ forward η cross section from PHENIX consistent with NLO pQCD
$\square \quad$ NLO pQCD agrees with 900 GeV ALICE midrapidity η cross section but overestimates cross section at 7 TeV and 8 TeV

