Exclusive π^{0} muoproduction cross section at COMPASS

Markéta Pešková (Charles University, Prague) on behalf of the COMPASS at CERN

Supported by Charles University grant PRIMUS/22/SCI/017

DIS 2024, April 8.-12. 2024

Spin Puzzle of the Nucleon

- Proton spin sum rule: $\frac{1}{2}=\frac{1}{2} \Delta \Sigma+\Delta G+L_{q}+L_{g}$

EMC Collaboration, Nucl. Phys. B328 (1989) 180
COMPASS experiment in μ p DIS: $\Delta \Sigma=0.32 \pm 0.03$
COMPASS Collaboration: Phys. Lett. B 693 (2010)
COMPASS, RHIC results: $\Delta G=0.2_{-0.07}^{+0.06}$
de Florian et al.Phys.Rev.Lett. 113 (2014), 012001
Missing component: $L_{q, g}=? \rightarrow$ GPDs provides access to the total angular momentum

- Generalised Parton Distributions (GPD) give access to the 3D structure of a hadron
- GPDs encode the correlation between the longitudinal momentum of a parton and its position in the transverse plane

$$
\begin{aligned}
& q^{f}\left(x, b_{\perp}\right) \xrightarrow{\int \mathrm{d} x} \text { Form factors } \\
& q^{f}\left(x, b_{\perp}\right) \xrightarrow{\int \mathrm{d} b_{\perp}} \text { PDFs }
\end{aligned}
$$

Generalised Parton Distributions

Definition of variables:
$q \ldots \gamma^{*}$ four-momentum $x \ldots$ average longitudinal momentum fraction of initial and final parton
ξ... difference of longitudinal-momentum fraction between initial and final parton $\approx x_{B} /\left(2-x_{B}\right)$

- In the leading twist there are:
- 4 chiral-even GPDs (parton helicity conserved)
- 4 chiral-odd (or transversity)

GPDs (parton helicity flipped)

	Quark Polarisation		
	Unpolarised (U)	Longitudinally polarised (L)	Tranversely polarised (T)
5^{5}	H		\bar{E}_{T}
亭		\tilde{H}	\tilde{E}_{T}
耪	E	\tilde{E}	H_{T}, \tilde{H}_{T}

Generalised Parton Distributions

Definition of variables:
$q \ldots \gamma^{*}$ four-momentum x... average longitudinal momentum fraction of initial and final parton
ξ... difference of longitudinal-momentum fraction between initial and final parton $\approx x_{B} /\left(2-x_{B}\right)$

- In the leading twist there are:
- 4 chiral-even GPDs (parton helicity conserved)
- 4 chiral-odd (or transversity) GPDs (parton helicity flipped) t...four-momentum transfer

		Quark Polarisation		
		Unpolarised (U)	Longitudinally polarised (L)	Tranversely polarised (T)
5	U	H		$\bar{H} T$
	L		\tilde{H}	$\tilde{H} T$
$\begin{aligned} & \text { ᄃ } \\ & \frac{0}{U} \\ & \text { Z } \end{aligned}$	T	E	\tilde{H}	$\mathbb{I I}_{1}, \tilde{H}$

Generalised Parton Distributions

- Most commonly used processes for GPDs parametrisation are Deeply Virtual Compton Scattering (DVCS) and Hard Exclusive Meson Production (HEMP)

GPDs enter the exclusive processes through Compton Form Factors in case of DVCS and Meson Production Form Factors in case of HEMP

Generalised Parton Distributions

Hard Exclusive Meson Production:

- Flavour separation for specific GPDs due to different partonic content of mesons
- DVCS sensitive to $H^{f}, E^{f}, \tilde{H}^{f}$, and \tilde{E}^{f}
- At the leading twist:
- Pseudoscalar mesons production involves GPDs \tilde{H}^{f}, and \tilde{E}^{f}
- Vector meson production involves H^{f}, and E^{f}
- All mesons are also sensitive to $\bar{E}_{T}^{f}=2 \tilde{H}_{T}^{f}+E_{T}^{f}$, and H_{T}^{f}
- This talk will concentrate on the π^{0} production: $\mu \mathrm{p} \rightarrow \mu^{\prime} \mathrm{p}^{\prime} \pi^{0}$

Road to π^{0} cross-section

COMPASS measurement in 2012, and 2016/17 with μ^{+}and μ^{-}beams of $E_{\mu}=160 \mathrm{GeV}$

Collected events corrected for:

- Luminosity of μ^{+}and μ^{-}beams
- Background subtraction
- Acceptance of the experimental set-up
- Reduction of $\mu \mathrm{p}$ cross-section to $\gamma^{*} \mathrm{p}$:

$$
\frac{\mathrm{d}^{4} \sigma_{\mu p}}{\mathrm{~d} Q^{2} \mathrm{~d} t \mathrm{~d} \nu \mathrm{~d} \phi}=\Gamma \frac{\mathrm{d}^{2} \sigma_{\gamma^{*} p}}{\mathrm{~d} t \mathrm{~d} \phi}
$$

with the virtual photon flux
$\Gamma=\Gamma\left(E_{\mu}, Q^{2}, \nu\right)$

Road to π^{0} cross-section

COMPASS measurement in 2012, and 2016/17 with μ^{+}and μ^{-}beams of $E_{\mu}=160 \mathrm{GeV}$

Collected events corrected for:

- Luminosity of μ^{+}and μ^{-}beams
- Background subtraction
- Acceptance of the experimental set-up
- Reduction of $\mu \mathrm{p}$ cross-section to $\gamma^{*} \mathrm{p}$:

$$
\frac{\mathrm{d}^{4} \sigma_{\mu p}}{\mathrm{~d} Q^{2} \mathrm{~d} t \mathrm{~d} \nu \mathrm{~d} \phi}=\Gamma \frac{\mathrm{d}^{2} \sigma_{\gamma^{*} p}}{\mathrm{~d} t \mathrm{~d} \phi}
$$

with the virtual photon flux
$\Gamma=\Gamma\left(E_{\mu}, Q^{2}, \nu\right)$

Road to π^{0} cross-section

COMPASS measurement in 2012, and 2016/17 with μ^{+}and μ^{-}beams of $E_{\mu}=160 \mathrm{GeV}$

Collected events corrected for:

- Luminosity of μ^{+}and μ^{-}beams
- Background subtraction
- Acceptance of the experimental set-up
- Reduction of $\mu \mathrm{p}$ cross-section to $\gamma^{*} \mathrm{p}$:

$$
\frac{\mathrm{d}^{4} \sigma_{\mu p}}{\mathrm{~d} Q^{2} \mathrm{~d} t \mathrm{~d} \nu \mathrm{~d} \phi}=\Gamma \frac{\mathrm{d}^{2} \sigma_{\gamma^{*} p}}{\mathrm{~d} t \mathrm{~d} \phi}
$$

with the virtual photon flux
$\Gamma=\Gamma\left(E_{\mu}, Q^{2}, \nu\right)$

Road to π^{0} cross-section

COMPASS measurement in 2012, and 2016/17 with μ^{+}and μ^{-}beams of $E_{\mu}=160 \mathrm{GeV}$

Collected events corrected for:

- Luminosity of μ^{+}and μ^{-}beams
- Background subtraction
- Acceptance of the experimental set-up
- Reduction of $\mu \mathrm{p}$ cross-section to $\gamma^{*} \mathrm{p}$:

$$
\frac{\mathrm{d}^{4} \sigma_{\mu p}}{\mathrm{~d} Q^{2} \mathrm{~d} t \mathrm{~d} \nu \mathrm{~d} \phi}=\Gamma \frac{\mathrm{d}^{2} \sigma_{\gamma^{*} p}}{\mathrm{~d} t \mathrm{~d} \phi}
$$

with the virtual photon flux
$\Gamma=\Gamma\left(E_{\mu}, Q^{2}, \nu\right)$

Exclusive π^{0} cross section

HEMP cross-section, reduced to γ^{*} p, for the unpolarised target and polarised lepton beam (relevant for COMPASS 2012, 2016/2017 measurements):

$$
\begin{aligned}
& \frac{\mathrm{d}^{2} \sigma_{\gamma^{*} p}^{\leftrightarrows}}{\mathrm{d} t \mathrm{~d} \phi}=\frac{1}{2 \pi}\left[\frac{\mathrm{~d} \sigma_{T}}{\mathrm{~d} t}+\epsilon \frac{\mathrm{d} \sigma_{L}}{\mathrm{~d} t}+\epsilon \cos (2 \phi) \frac{\mathrm{d} \sigma_{T T}}{\mathrm{~d} t}+\sqrt{\epsilon(1+\epsilon)} \cos \phi \frac{\mathrm{d} \sigma_{L T}}{\mathrm{~d} t}\right. \\
& \left.\mp\left|P_{l}\right| \sqrt{\epsilon(1-\epsilon)} \sin \phi \frac{\mathrm{d} \sigma_{L T}^{\prime}}{\mathrm{d} t}\right]
\end{aligned}
$$

ϵ is a kinematic factor, close to 1 in COMPASS kinematics

Factorization proven for σ_{L}, not for σ_{T} which is expected to be suppressed by a factor $1 / Q^{2}$ BUT large contributions have been observed at JLab

Exclusive π^{0} cross section

Spin independent HEMP cross-section after averaging the two spin-dependent cross-sections:

$$
\begin{aligned}
& \frac{\mathrm{d}^{2} \sigma_{\gamma^{*} p}}{\mathrm{~d} t \mathrm{~d} \phi}=\frac{1}{2}\left(\frac{\mathrm{~d}^{2} \sigma_{\gamma^{*} p}}{\mathrm{~d} t \mathrm{~d} \phi}+\frac{\mathrm{d}^{2} \sigma_{\gamma^{*} p}}{\mathrm{~d} t \mathrm{~d} \phi}\right)= \\
& \frac{1}{2 \pi}\left[\frac{\mathrm{~d} \sigma_{T}}{\mathrm{~d} t}+\epsilon \frac{\mathrm{d} \sigma_{L}}{\mathrm{~d} t}+\epsilon \cos (2 \phi) \frac{\mathrm{d} \sigma_{T T}}{\mathrm{~d} t}+\sqrt{\epsilon(1+\epsilon)} \cos \phi \frac{\mathrm{d} \sigma_{L T}}{\mathrm{~d} t}\right. \\
& \mp\left|P_{l}\right| \sqrt{\epsilon}\left(1>\frac{\mathrm{d} \sigma_{L T}^{\prime}}{\mathrm{d} t}\right]
\end{aligned}
$$

After integration in ϕ :

$$
\frac{\mathrm{d} \sigma_{T}}{\mathrm{~d} t}+\epsilon \frac{\mathrm{d} \sigma_{L}}{\mathrm{~d} t}
$$

\Rightarrow study t dependence

Exclusive π^{0} cross section

$$
\frac{\mathrm{d}^{2} \sigma_{\gamma^{*} p}}{\mathrm{~d} t \mathrm{~d} \phi}=\frac{1}{2 \pi}\left[\frac{\mathrm{~d} \sigma_{T}}{\mathrm{~d} t}+\epsilon \frac{\mathrm{d} \sigma_{L}}{\mathrm{~d} t}+\epsilon \cos (2 \phi) \frac{\mathrm{d} \sigma_{T T}}{\mathrm{~d} t}+\sqrt{\epsilon(1+\epsilon)} \cos \phi \frac{\mathrm{d} \sigma_{L T}}{\mathrm{~d} t}\right]
$$

GPDs in exclusive π^{0} production

$$
\begin{aligned}
\frac{\mathrm{d} \sigma_{L}}{\mathrm{~d} t} & \propto\left[\left(1-\xi^{2}\right)|\langle\tilde{\mathcal{H}}\rangle|^{2}-2 \xi^{2} \operatorname{Re}\left(\langle\tilde{\mathcal{H}}\rangle^{*}\langle\tilde{\mathcal{E}}\rangle\right)\right. \\
& \left.-\frac{t^{\prime}}{4 M^{2}} \xi^{2}|\langle\tilde{\mathcal{E}}\rangle|^{2}\right] \\
\frac{\mathrm{d} \sigma_{T}}{\mathrm{~d} t} & \propto\left[\left(1-\xi^{2}\right)\left|\left\langle\mathcal{H}_{T}\right\rangle\right|^{2}-\frac{t^{\prime}}{8 M^{2}}\left|\left\langle\overline{\mathcal{E}}_{T}\right\rangle\right|^{2}\right] \\
\frac{\mathrm{d} \sigma_{T T}}{\mathrm{~d} t} & \propto t^{\prime}\left|\left\langle\overline{\mathcal{E}}_{T}\right\rangle\right|^{2} \\
\frac{\mathrm{~d} \sigma_{L T}}{\mathrm{~d} t} & \propto \xi \sqrt{1-\xi^{2}} \sqrt{-t^{\prime}} \operatorname{Re}\left(\left\langle\mathcal{H}_{T}\right\rangle^{*}\langle\tilde{\mathcal{E}}\rangle\right)
\end{aligned}
$$

Goloskokov and Kroll, EPJ-A 47 (2011) 112

		Quark Polarisation		
		Unpolarised (U)	Longitudinally polarised (L)	Tranversely polarised (T)
	U	H		\bar{H}_{T}
	L		\tilde{H}	\tilde{E}_{T}
	T	E	\tilde{H}	H_{T}, \tilde{H}_{T}

Impact of \bar{E}_{T} should be visible in $\frac{\mathrm{d} \sigma_{T T}}{\mathrm{~d} t}$, and also a dip at small t of $\frac{\mathrm{d} \sigma_{T} t}{\mathrm{~d} t}$

$$
t^{\prime}=t-t_{\min }
$$

COMPASS GPD programme

- Two stage magnetic spectrometer with large angular and momentum acceptance
- Versatile usage: hadron and muon beams
- Particle identification:
- Ring Imaging Cherenkov (RICH) detector
- Electromagnetic calorimeters (ECAL0, ECAL1, ECAL2)
- Hadronic calorimeters (HCAL1, HCAL2)
- 2 muon walls

- GPD program: 2012 pilot run, 2016/17 main measurement

COMPASS GPD program

- Target ToF system:
- 24 inner and outer scintillators
- 1 GHz readout
- 310 ps ToF resolution
- ECAL0 calorimeter:
- shaslyk modules
- $2 \times 2 \mathrm{~m}, 2200$ channels

New equipements:
$>2.5 \mathrm{~m}$ LH2 target
$>4 \mathrm{~m}$ ToF Barrel CAMERA
-ECALO

Exclusive π^{0} production: Selection

- Incoming and outgoing μ connected to primary vertex
- Two photons in ECALs from π^{0} decay
- Recoil proton candidate
- $1<Q^{2}<8(\mathrm{GeV} / c)^{2}, 6.4<v<40$ $\mathrm{GeV}, 0.08<|t|<0.64(\mathrm{GeV} / c)^{2}$

Selections for exclusive π^{0} events:

Exclusive π^{0} production: Selection

- Incoming and outgoing μ connected to primary vertex
- Two photons in ECALs from π^{0} decay
- Recoil proton candidate
- $1<Q^{2}<8(\mathrm{GeV} / c)^{2}, 6.4<v<40$ $\mathrm{GeV}, 0.08<|t|<0.64(\mathrm{GeV} / c)^{2}$

Selections for exclusive π^{0} events:

- Transverse momentum constraint:

$$
\Delta p_{T}=p_{T, \text { spect }}^{p}-p_{T, \text { recoil }}^{p}
$$

$\Delta \varphi=\varphi_{\text {spect }}^{p}-\varphi_{\text {recoil }}^{p}$
Z coordinate of inner CAMERA ring:

- Energy-momentum conservation:
- Invariant mass $M_{\gamma \gamma}$ cut

- Kinematic fit of reaction $\mu \mathrm{p} \rightarrow \mu^{\prime} \mathrm{p}^{\prime} \pi^{0}$ $M_{\mathrm{X}}^{2}=\left(p_{\mathrm{\mu}}+p_{p}-p_{\mathrm{n}^{\prime}}-p_{p^{\prime}}-p_{\pi 0}\right)^{2}$

Exclusive π^{0} production: Selection

- Incoming and outgoing μ connected to primary vertex
- Two photons in ECALs from π^{0} decay
- Recoil proton candidate
- $1<Q^{2}<8(\mathrm{GeV} / c)^{2}, 6.4<v<40$ $\mathrm{GeV}, 0.08<|t|<0.64(\mathrm{GeV} / c)^{2}$

Selections for exclusive π^{0} events:

- Transverse momentum constraint:
$\Delta p_{T}=p_{T, \text { spect }}^{p}-p_{T, \text { recoil }}^{p}$
- $\Delta \varphi=\varphi_{\text {spect }}^{p}-\varphi_{\text {recoil }}^{p}$
- Z coordinate of inner CAMERA ring:
$\Delta z=z_{\text {spect }}^{p}-z_{\text {recoil }}^{p}$
Energy-momentum conservation:
$M_{X}^{2}=\left(p_{\mu}+p_{p}-p_{\mu^{\prime}}-p_{p^{\prime}}-p_{\pi^{0}}\right)^{2}$
$\Delta z=z_{\text {spect }}^{p}-z_{\text {recoil }}^{p}$
Energy-momentum conservation:
$M_{X}^{2}=\left(p_{\mu}+p_{p}-p_{\mu^{\prime}}-p_{p^{\prime}}-p_{\pi^{0}}\right)^{2}$
- Invariant mass $M_{\gamma \gamma}$ cut

- Kinematic fit of reaction $\mu \mathrm{p} \rightarrow \mu^{\prime} \mathrm{p}^{\prime} \pi^{0}$

Exclusive π^{0} production: Selection

- Incoming and outgoing μ connected to primary vertex
- Two photons in ECALs from π^{0} decay
- Recoil proton candidate
- $1<Q^{2}<8(\mathrm{GeV} / c)^{2}, 6.4<v<40$ $\mathrm{GeV}, 0.08<|t|<0.64(\mathrm{GeV} / c)^{2}$

Selections for exclusive π^{0} events:

- Transverse momentum constraint:
$\Delta p_{T}=p_{T, \text { spect }}^{p}-p_{T, \text { recoil }}^{p}$
- $\Delta \varphi=\varphi_{\text {spect }}^{p}-\varphi_{\text {recoil }}^{p}$
- Z coordinate of inner CAMERA ring:

$$
\Delta z=z_{\text {spect }}^{p}-z_{\text {recoil }}^{p}
$$

- Energy-momentum conservation: $M_{X}^{2}=\left(p_{\mu}+p_{p}-p_{\mu^{\prime}}-p_{p^{\prime}}-p_{\pi^{0}}\right)^{2}$
(Invariant mass $M_{\Upsilon \sim}$ cut

- Kinematic fit of reaction $\mu \mathrm{p} \rightarrow \mu^{\prime} \mathrm{p}^{\prime} \pi^{0}$

Exclusive π^{0} production: Selection

- Incoming and outgoing μ connected to primary vertex
- Two photons in ECALs from π^{0} decay
- Recoil proton candidate
- $1<Q^{2}<8(\mathrm{GeV} / c)^{2}, 6.4<v<40$ $\mathrm{GeV}, 0.08<|t|<0.64(\mathrm{GeV} / c)^{2}$

Selections for exclusive π^{0} events:

- Transverse momentum constraint:
$\Delta p_{T}=p_{T, \text { spect }}^{p}-p_{T, \text { recoil }}^{p}$
- $\Delta \varphi=\varphi_{\text {spect }}^{p}-\varphi_{\text {recoil }}^{p}$
- Z coordinate of inner CAMERA ring:

$$
\Delta z=z_{\text {spect }}^{p}-z_{\text {recoil }}^{p}
$$

- Energy-momentum conservation:

$$
M_{X}^{2}=\left(p_{\mu}+p_{p}-p_{\mu^{\prime}}-p_{p^{\prime}}-p_{\pi^{0}}\right)^{2}
$$

Exclusive π^{0} production: Selection

- Incoming and outgoing μ connected to primary vertex
- Two photons in ECALs from π^{0} decay
- Recoil proton candidate
- $1<Q^{2}<8(\mathrm{GeV} / c)^{2}, 6.4<v<40$ $\mathrm{GeV}, 0.08<|t|<0.64(\mathrm{GeV} / c)^{2}$

Selections for exclusive π^{0} events:

- Transverse momentum constraint:

$$
\Delta p_{T}=p_{T, \text { spect }}^{p}-p_{T, \text { recoil }}^{p}
$$

- $\Delta \varphi=\varphi_{\text {spect }}^{p}-\varphi_{\text {recoil }}^{p}$
- Z coordinate of inner CAMERA ring:

$$
\Delta z=z_{\text {spect }}^{p}-z_{\text {recoil }}^{p}
$$

- Energy-momentum conservation:
$M_{X}^{2}=\left(p_{\mu}+p_{p}-p_{\mu^{\prime}}-p_{p^{\prime}}-p_{\pi^{0}}\right)^{2}$
- Invariant mass $M_{\gamma \gamma}$ cut

Exclusive π^{0} production: Selection

- Incoming and outgoing μ connected to primary vertex
- Two photons in ECALs from π^{0} decay
- Recoil proton candidate
- $1<Q^{2}<8(\mathrm{GeV} / c)^{2}, 6.4<v<40$ $\mathrm{GeV}, 0.08<|t|<0.64(\mathrm{GeV} / c)^{2}$

Selections for exclusive π^{0} events:

- Transverse momentum constraint:

$$
\Delta p_{T}=p_{T, \text { spect }}^{p}-p_{T, \text { recoil }}^{p}
$$

- $\Delta \varphi=\varphi_{\text {spect }}^{p}-\varphi_{\text {recoil }}^{p}$
- Z coordinate of inner CAMERA ring:

$$
\Delta z=z_{\text {spect }}^{p}-z_{\text {recoil }}^{p}
$$

- Energy-momentum conservation:
$M_{X}^{2}=\left(p_{\mu}+p_{p}-p_{\mu^{\prime}}-p_{p^{\prime}}-p_{\pi^{0}}\right)^{2}$
- Invariant mass $M_{\gamma \gamma}$ cut
- Kinematic fit of reaction $\mu \mathrm{p} \rightarrow \mu^{\prime} \mathrm{p}^{\prime} \pi^{0}$

Exclusive π^{0} production: SIDIS background estimation

- Main background of π^{0} production \Rightarrow non-exclusive DIS processes
- 2 Monte Carlo simulations with the same π^{0} selection criteria:
- LEPTO for the non-exclusive background
- HEPGEN++ shape of distributions of exclusive π^{0} production (signal contribution)
- Both MC samples normalised to the experimental $M_{\gamma \gamma}$ distribution
- The fraction of background events $r_{\text {LEPTO }}$ from fitting MC mixture on the exclusivity distributions

- Fraction of non-exclusive background in data $\Rightarrow(8 \pm 5) \%$
- Background fit method is the main source of systematic uncertainty

Exclusive π^{0} production: SIDIS background estimation

Exclusive variables

Exclusive π^{0} production: COMPASS acceptance

- 4 D acceptance in bins of $\phi_{\pi^{0}}, \nu,|t|, Q^{2}$
- figure shows 3D projection, as a function of $|t|$

Exclusive π^{0} production: COMPASS acceptance

- 4 D acceptance in bins of $\phi_{\pi^{0}}, \nu,|t|, Q^{2}$
- figure shows 3D projection, as a function of $\phi_{\pi^{0}}$

Exclusive π^{0} cross-section as a function of $|t|$

- Differential $\gamma^{*} \mathrm{p} \rightarrow \mathrm{p}^{\prime} \pi^{0}$ cross-section as function of $|t|$, integrated over ϕ
- Newest 2016 data release

Exclusive π^{0} cross-section as a function of $|t|$

- Differential $\gamma^{*} \mathrm{p} \rightarrow \mathrm{p}^{\prime} \pi^{0}$ cross-section as function of $|t|$, integrated over ϕ
- Newest 2016 data release
- For comparison with the results from 2012 (PLB 805 (2020) 135454), 2016 data analysed in a smaller kinematic domain:
- $8.5<\nu<28 \mathrm{GeV}, 1<Q^{2}<5(\mathrm{GeV} / c)^{2}, 0.08<|t|<0.64(\mathrm{GeV} / c)^{2}$

Exclusive π^{0} cross-section as a function of $|t|$

- Differential $\gamma^{*} \mathrm{p} \rightarrow \mathrm{p}^{\prime} \pi^{0}$ cross-section as function of $|t|$, integrated over ϕ
- Newest 2016 data release

Goloskokov\&Kroll model EPJ A47 (2011) 112

Exclusive π^{0} cross-section as a function of ϕ

- Newest 2016 data release
- Differential $\gamma^{*} \mathrm{p} \rightarrow \mathrm{p}^{\prime} \pi^{0}$ cross-section as function of ϕ, averaged over $|t|$: $\frac{\mathrm{d}^{2} \sigma_{\gamma^{*} p}}{\mathrm{~d} t \mathrm{~d} \phi}=\frac{1}{2 \pi}\left[\frac{\mathrm{~d} \sigma_{T}}{\mathrm{~d} t}+\epsilon \frac{\mathrm{d} \sigma_{L}}{\mathrm{~d} t}+\epsilon \cos (2 \phi) \frac{\mathrm{d} \sigma_{T T}}{\mathrm{~d} t}+\sqrt{\epsilon(1+\epsilon)} \cos \phi \frac{\mathrm{d} \sigma_{L T}}{\mathrm{~d} t}\right]$

Exclusive π^{0} cross-section as a function of ϕ

- Newest 2016 data release
- Differential $\gamma^{*} \mathrm{p} \rightarrow \mathrm{p}^{\prime} \pi^{0}$ cross-section as function of ϕ, averaged over $|t|$: $\frac{\mathrm{d}^{2} \sigma_{\gamma^{*} p}}{\mathrm{~d} t \mathrm{~d} \phi}=\frac{1}{2 \pi}\left[\frac{\mathrm{~d} \sigma_{T}}{\mathrm{~d} t}+\epsilon \frac{\mathrm{d} \sigma_{L}}{\mathrm{~d} t}+\epsilon \cos (2 \phi) \frac{\mathrm{d} \sigma_{T T}}{\mathrm{~d} t}+\sqrt{\epsilon(1+\epsilon)} \cos \phi \frac{\mathrm{d} \sigma_{L T}}{\mathrm{~d} t}\right]$

$$
\begin{gathered}
\left\langle\frac{\sigma_{\mathrm{T}}}{|t|}+\epsilon \frac{\sigma_{\mathrm{L}}}{|t|}\right\rangle=\left(6.9 \pm 0.3_{\mathrm{stat}} \pm 0.8_{\mathrm{syst}}\right) \frac{\mathrm{nb}}{(\mathrm{GeV} / c)^{2}} \\
\left\langle\frac{\sigma_{\mathrm{TT}}}{|t|}\right\rangle=\left(-4.5 \pm 0.5_{\mathrm{stat}} \pm 0.2_{\mathrm{syst}}\right) \frac{\mathrm{nb}}{(\mathrm{GeV} / c)^{2}} \\
\left\langle\frac{\sigma_{\mathrm{LT}}}{|t|}\right\rangle=\left(0.06 \pm 0.2_{\mathrm{stat}} \pm 0.1_{\mathrm{syst}}\right) \frac{\mathrm{nb}}{(\mathrm{GeV} / c)^{2}}
\end{gathered}
$$

Summary

$|t|$-dependence and ϕ-dependence of exclusive π^{0} cross-section on unpolarised proton target:
num New, preliminary 2016 COMPASS results at low $\xi\left(\right.$ or $\left\langle x_{B}\right\rangle=0.134$), input for constraining phenomenological models (Goloskokov\&Kroll, Goldstein\&Liuti)

\rightarrow Statistics of 2016 about $2.3 \times$ larger than of published results from 2012 pilot run
\rightarrow The whole collected 2016/2017 statistics $\sim 9 \times$ larger then 2012 \rightarrow planned to process all available data and head towards publication of 2016 and then combined 2016/2017 results

SPARES

Exclusive π^{0} cross-section as a function of ϕ

- In order to compare with the results from 2012 (PLB 805 (2020) 135454), the 2016 data were analysed in a smaller kinematic domain
- $8.5<\nu<28 \mathrm{GeV}, 1<Q^{2}<5(\mathrm{GeV} / c)^{2}, 0.08<|t|<0.64(\mathrm{GeV} / c)^{2}$

Exclusive π^{0} cross-section as a function of ϕ

- Differential $\gamma^{*} \mathrm{p} \rightarrow \mathrm{p}^{\prime} \pi^{0}$ cross-section as function of ϕ, averaged over $|t|$ in the smaller kinematic domain:
$\frac{\mathrm{d}^{2} \sigma_{\gamma^{*} p}}{\mathrm{~d} t \mathrm{~d} \phi}=\frac{1}{2 \pi}\left[\frac{\mathrm{~d} \sigma_{T}}{\mathrm{~d} t}+\epsilon \frac{\mathrm{d} \sigma_{L}}{\mathrm{~d} t}+\epsilon \cos (2 \phi) \frac{\mathrm{d} \sigma_{T T}}{\mathrm{~d} t}+\sqrt{\epsilon(1+\epsilon)} \cos \phi \frac{\mathrm{d} \sigma_{L T}}{\mathrm{~d} t}\right]$

PLB 805 (2020) 135454

Kinematic fit

- Measurement of exclusive processes at COMPASS is overconstrained \rightarrow can be used to improve precision of kinematic quantities using kinematically constrained fit
- Kinematic fit improves the resolution of the signal and lowers the background
- It works in a principle of minimisation of least square function $\chi^{2}(\vec{k})=\left(\vec{k}_{f i t}-\vec{k}\right)^{T} \hat{C}^{-1}\left(\vec{k}_{f i t}-\vec{k}\right)$, where \vec{k} is a vector of measured quantities and \hat{C} is their covariance matrix
- Method used for the minimisation is Lagrange multipliers with constraints g_{i} :

$$
L(\vec{k}, \vec{\alpha})=\chi^{2}(\vec{k})+2 \sum_{i=1}^{N} \alpha_{i} g_{i}
$$

- Constraints include momentum and energy conservation, common vertex for all tracks (except proton), constraints for final proton, and mass constraint

Past and future GPD measurements

