

Dependence of Charged Pion Production on Transverse Momentum from Semi-Inclusive Deep Inelastic Electron Scattering from ¹H and ²H

Edward R. Kinney¹ On behalf of P. Bosted², R. Ent³, H. Mkrtchyan⁴ and the E12-09-17 Collaboration

¹University of Colorado at Boulder, USA, ²College of William and Mary, USA, ³Thomas Jefferson National Accelerator Facility, USA, ⁴A.I. Alikhanyan National Science Laboratory, Armenia

Preliminaries and Outline

- Thanks to the many people for sharing their slides from previous talks.
- My apologies in advance for any mis-statements or misrepresentations I may make; they are my mistakes, not theirs!
 - Semi-Inclusive Deep Inelastic Scattering (SIDIS)
 - Earlier Hall C Measurements
 - Experimental Description
 - Results
 - Summary and Outlook

SIDIS in Hall C

Past

• E00-108: 6 GeV beam with HMS and SOS spectrometers $\pi^{+/-}$ (H,D)

Present

- E12-09-002 (CSV): 12 GeV with HMS and SHMS $\pi^{+/-}$ (D)
- E12-09-017 (pT-SIDIS) *π*^{+/- ,} K^{+/-} (H,D)
- E12-13-007 (*π*⁰-SIDIS) HMS and NPS + PR12-23-014 (R) (H,D)

Future!

- E12-06-104 (R-SIDIS) *π*^{+/-} (H,D)
- C12-15-006 Tagged DIS!

Do parton distributions and fragmentation functions factorize at Jefferson Lab energies?

Flavor Decomposition of SIDIS

$$\frac{1}{\sigma_{(e,e')}} \frac{d\sigma}{dz} (ep \rightarrow hX) = \frac{\sum_{q} e_q^2 f_q(x) D_q^h(z)}{\sum_{q} e_q^2(x) f_q(x)}$$

 $f_q(x)$: parton distribution function $D_q^h(z)$: fragmentation function

- Leading-Order (LO) QCD
- after integration over $p_{h\perp}$ and φ_h
- NLO: gluon radiation mixes x and z dependences
- Target-Mass corrections at large z
- In(1-z) corrections at large z

$$M_x^2 = W'^2 \sim M^2 + Q^2 (1/x - 1)(1 - z)$$

With p_T and k_T dependences, some kind of convolution is necessary to obtain final P_{h⊥}

JLab E00-108 Results

T. Navasardyan et al., PRL 98 022001 (2007)

- Cross section/simulation based on factorization prediction
- Good Agreement at low z
- Delta Resonance at high z

5

T. Navasardyan et al., PRL 98 022001 (2007)

Factorization Test: E00-108

E.R. Kinney

DIS 2024 - Grenoble

Jefferson Lab Exp. E12-09-017: Precise measurements of (e,e'π[±]) and (e,e'K[±]) cross sections at Semi-Inclusive Deep Inelastic Scattering (SIDIS) Kinematics

- Precise measurements to test the assumptions of factorization of SIDIS process at photon invariant momentum transfer $Q^2 = q^2 v^2$, at moderate Bjorken $x = Q^2/2Mv$ (*M* is proton mass)
- Allow exploration of assumptions of favored/disfavored fragmentation of different flavor quarks using ¹H and ²H targets
- Investigate possible target mass effects
- Investigate possible higher twist effects
- Complement SIDIS measurements in large open acceptance detector CLAS at Jefferson Lab Hall B

SIDIS Differential Cross Section

Measurement of 6-fold differential cross section with unpolarized target has five structure functions (formalism from Bacchetta *et al.,* JHEP 0702, 93 (2007).)

$$\frac{d\sigma}{dx\,dy\,d\psi\,dz\,d\phi_h\,dP_{h\perp}^2} = \frac{\alpha^2}{xyQ^2}\frac{y^2}{2(1-\epsilon)}(1+\frac{\gamma^2}{2x})$$

$$\begin{cases} F_{UU,T} + \epsilon F_{UU,L} + \sqrt{2\epsilon(1+\epsilon)}\cos\phi_h F_{UU}^{\cos\phi_h} + \epsilon\cos(2\phi_h) F_{UU}^{\cos2\phi_h} \end{cases}$$

Virtual Photon Polarization: ϵ Electron helicity: λ_e Hadron azimuthal angle: ϕ_h

Structure functions depend on x, Q^2 , p_T !

 $+\lambda_e \sqrt{2\epsilon(1-\epsilon)}\sin\phi_h F_{LU}^{\sin\phi_h}$

SIDIS cross section model with Transverse Momentumdependent Parton and Fragmentation Distributions (TMDs)

 $f_q(x,{f k}_ot)$: parton distribution function as function of intrinsic parton k_ au

 $D^h_q(z,{f p}_{ot})$: fragmentation function as a function of fragmentation ${f p}_ au$

Cross section for SIDIS hadron of fractional energy z_h and transverse momentum P_T

$$\frac{d^5 \sigma^{\ell p \to \ell h X}}{dx_B \, dQ^2 \, dz_h \, d^2 \boldsymbol{P}_T} = \sum_q e_q^2 \int d^2 \boldsymbol{k}_\perp \, f_q(x, \boldsymbol{k}_\perp) \, \frac{2\pi\alpha^2}{x_B^2 s^2} \, \frac{\hat{s}^2 + \hat{u}^2}{Q^4} \\ \times D_q^h(z, \boldsymbol{p}_\perp) \, \frac{z}{z_h} \, \frac{x_B}{x} \left(1 + \frac{x_B^2}{x^2} \frac{k_\perp^2}{Q^2}\right)^{-1}$$

from Anselmino et al. (hep-ph/0412316v1)

DIS 2024 - Grenoble

Multiplicity Parameterization

Now perform k_{\perp} integration and keep terms order $O(k_{\perp}/Q)$ on previous cross section expression to get

$$\begin{split} \frac{d^5 \sigma^{\ell p \to \ell h X}}{dx_B \, dQ^2 \, dz_h \, d^2 \mathbf{P}_T} \simeq &\sum_q \frac{2\pi \alpha^2 e_q^2}{Q^4} \, f_q(x_B) \, D_q^h(z_h) \bigg[(1 + (1 - y)^2) \\ &-4 \, \frac{(2 - y)\sqrt{1 - y} \, \langle k_\perp^2 \rangle \, z_h \, P_T}{\langle P_T^2 \rangle \, Q} \, \cos \phi_h \bigg] \frac{1}{\pi \langle P_T^2 \rangle} \, e^{-P_T^2 / \langle P_T^2 \rangle} \, , \end{split}$$

$$\end{split}$$
where $\langle P_T^2 \rangle = \langle p_\perp^2 \rangle + z^2 \langle k_\perp^2 \rangle$

We divide by DIS cross section and fit the multiplicities with:

$$M(x, Q^2, z, P_{hT}, \phi) = \frac{d\sigma_{ee'\pi X}}{d\sigma_{ee'X}} = \frac{M_0}{2\pi < \mu^2 >} e^{-P_{hT}^2/<\mu^2 >} (1 + A\cos\phi + B\cos 2\phi)$$

$$M_0, < \mu^2 > A, B$$
 are fit parameters

V

Experimental Setup: Hall C Spectrometers at Jefferson Lab

- CW Electron Beam, energies up to 11 GeV
- Two magnetic focusing spectrometers on common pivot: HMS and SHMS
- High cooling power 10 cm liquid Hydrogen and Deuterium targets plus Al window dummy for background subtraction
- W² = 5.08 GeV² and larger (up to 11.38 GeV²)
- SHMS angle down to 6.6° (for π detection)
- HMS angle down to 13.5° (e⁻detection) (separation HMS-SHMS > 17.5°)
- $M_{X^2} = M_{p^2} + Q^2(1/x 1)(1 z) > 2.9 \text{ GeV}^2$ (up to 7.8 GeV²)
- Improved coverage in all kinematic variables, especially ϕ and p_T
- Chose to keep Q²/x fixed q_γ ~ constant (exception are data scanning Q² at fixed x)
- All kinematics both for π⁺ (and K⁺) and π⁻ (and K⁻), both for LH2 and LD2 (and Aluminum dummy)

Hall C Spectrometers

Kinematic Coverage in (x, Q2)

- Solid circles are from pt-SIDIS, open circles CSV SIDIS
- Each circle represents 10,000 to 1,000,000 events
- Dominated by valance quark distributions

DIS 2024 - Grenoble

10 April 2024

Azimuthal Dependence at x=0.3, Q² = 3.0 GeV/c²

14

Insets of Azimuthal Dependence at x=0.3, Q² = 3.0

- Dashed curves are 4 parameter fit (solid B=0)
- ϕ_h modulation appears to increase at higher p_T

Transverse Momentum Dependence

1

Inset of Transverse Momentum Dependence

• Slopes are smaller at low transverse momentum than at higher values.

Single width gaussian gives poor fit

• Better agreement with MAP slopes at higher transverse momentum.

Four-parameter Fit Results (1st 5 p_T bins)

E.R. Kinney

DIS 2024 - Grenoble

Inset of "A" Fit Results (x=0.3, Q²=3.0 GeV/c²)

$$p\pi^+ d\pi^+ p\pi^- d\pi^-$$

"A" parameter does not agree with Cahn kinematic term evaluated with average quark transverse momentum of 300 MeV (solid curve).

$$\frac{d^5 \sigma^{\ell p \to \ell h X}}{dx_B \, dQ^2 \, dz_h \, d^2 \mathbf{P}_T} \simeq \sum_q \frac{2\pi \alpha^2 e_q^2}{Q^4} \, f_q(x_B) \, D_q^h(z_h) \Big[(1 + (1 - y)^2) \\ -4 \, \frac{(2 - y)\sqrt{1 - y} \, \langle k_\perp^2 \rangle \, z_h \, P_T}{\langle P_T^2 \rangle \, Q} \, \cos \phi_h \Big] \frac{1}{\pi \langle P_T^2 \rangle} \, e^{-P_T^2 / \langle P_T^2 \rangle} \,,$$

Inset of " $< \mu^2 >$ " Fit Results (x=0.3, Q²=3.0 GeV/c²)

 $p\pi^+ d\pi^+ p\pi^- d\pi^-$

- Little target dependence seen
- Low pT slopes ($\sim 1/ < \mu^2 >$) smaller than MAP expectations

Summary and Outlook

- Analysis of large body of precise cross sections finished by Peter Bosted (approximately 21000 cross sections!)
- Phenomenological evaluation in terms of multiplicities, p_T gaussian width, and cosine dependences in azimuthal angle
- Non-constant p_T slope and positive/non-zero azimuthal dependences suggest higher-twist effects are important
- Charged kaon SIDIS to come soon!
- Currently running in Hall C: Measurement of π^0 SIDIS (at same time as DVCS) using new Neutral Particle Detector. Longitudinal/ transverse separated cross sections of high stat precision expected
- Measurement of Longitudinal/transverse ratio R in charged π SIDIS presently scheduled to take place in 2025 (first precise measurement!)