Highlights on top-quark properties, mass and cross-section measurements with the ATLAS detector International Workshop on Deep Inelastic Scattering

#### L. Monsonis, on behalf of the ATLAS collaboration

IFIC, University of Valencia

April 10, 2024











### Top-quark properties, production and decay

### Top-quark properties (PDG-2012)

- Spin: s = 1/2
- Charge: Q = +2/3







Top-quark is the unique quark which decays before hadronization due to its short lifetime. It allows the study of bare quarks

### Top quark mass measurement

 Relations between top and Higgs masses change in new physics: mass measurements contribute to restrict the parameters space of BSM models.

• Yukawa coupling  $\sim$  1 to Higgs boson: the top and Higgs masses play a important role in the EW vacuum stability.



## Top quark in LHC

#### • LHC is a TOP QUARK FACTORY.

- Large production cross sections provided by high center-of-mass energy.
- Allowing precision studies for:
  - Inclusive and differential cross-sections for various production processes.
  - Determination of top quark properties: mass, width, charge asymmetry, spin-correlation,...
  - Improving modeling of QCD and PDF.
- In this presentation a brief summary of the ATLAS recent properties top-quark properties measurements will be shown.



### Single top t-channel total cross-section (arXiv:2403.02126)

This analysis performs the measurement of the inclusive t-channel top and anti-top cross section and their ratio  $R_t = \sigma_t / \sigma_{\overline{t}}$ .

#### Motivation:

- Precision measurement of the largest single top production channel.
- To provide a measurement using the full Run 2 dataset (previous result uses  $3.2 \ fb^{-1}$ ).
- Testing pdfs (particularly for  $R_t$ ).
- Extraction of  $|V_{tb}|$  and also constraints on other CKM values.
- Search for new physics in the EFT framework.

A neural network has been used to separate t-channel single top-quark signal events from the expected background events.



## Single top t-channel total cross-section (arXiv:2403.02126)

A binned profile maximum likelihood fit to neural network discrimant used to determine the cross-section.

#### **RESULTS**:

| $\sigma_t$            | $\sigma_{\bar{t}}$   | $\sigma_{ m tch}$ | $R_t$                     |
|-----------------------|----------------------|-------------------|---------------------------|
| $137.0^{+8.1}_{-7.6}$ | $83.8^{+5.5}_{-5.2}$ | $221^{13}_{-13}$  | $1.636^{+0.036}_{-0.034}$ |

Relative uncertainties:  $\sim 6~\%$  for each cross section.

#### **PREDICTIONS:**

| $\sigma_t$    | $\sigma_{\overline{t}}$ |
|---------------|-------------------------|
| $134.2\pm2.2$ | 80.0                    |

 $f_{l\nu}|V_{tb}| = 1.015 \pm 0.031$ 30 % improvement respect combination ATLAS and CMS Run I measurement.

#### **EFT** interpretation overview:

• Only the four-fermion operator  $O_{Qq}^{3,1}$ , constrain  $C_{Qq}^{3,1}$ , is consider.



- 95 % CL is extracted from a likelihood scan.
- Obtained confidence interval:  $-0.272 < C_{Oa}^{3,1} < 0.206.$

# $t\overline{t}$ cross-section and $t\overline{t}/Z$ cross-section ratio using LHC Run 3 (Phys. Lett. B 848 (2024))

#### Motivation:

- Measure inclusive  $t\overline{t}$  cross-section in dilepton channel only:
  - Smaller background.
  - Low dependence on jet uncertainties.
- Measure  $t\overline{t}/Z$  cross-section ratio:
  - Lepton uncertainties are reduced somewhat.
  - Sensitive to gluon/quark PDFs.

#### $t\overline{t}$ cross section:

• A profile likelihood fit to the number of events with one b-tagged jet (*N*<sub>1</sub>) and two b-tagged jets (*N*<sub>2</sub>).



# $t\bar{t}$ cross-section and $t\bar{t}/Z$ cross-section ratio using LHC Run 3 (Phys. Lett. B 848 (2024))





$$\begin{split} \sigma_{t\bar{t}}/\sigma_{Z}^{\rm SM} &= 1.245 \pm 0.076(\text{scale} + \text{PDF}, \text{PDF4LHC21}), \\ \sigma_{t\bar{t}}^{\rm SM} &= 924_{-40}^{+32}(\text{scale} + \text{PDF})\text{pb}, \\ \sigma_{Z}^{\rm SM} &= 741 \pm 15(\text{scale} + \text{PDF})\text{pb} \end{split}$$

#### Fitted values:

 $\sigma_{t\bar{t}}/\sigma_{Z} = 1.145 \pm 0.003(\text{stat}) \pm 0.021(\text{syst}) \pm 0.002(\text{lumi}),$  $\sigma_{t\bar{t}} = 850 \pm 3(\text{stat}) \pm 18(\text{syst}) \pm 20(\text{lumi})\text{pb},$  $\sigma_{Z} = 743.6 \pm 0.2(\text{stat}) \pm 10.7(\text{syst}) \pm 16.9(\text{lumi})\text{pb},$ 

Experimental uncertainties for σ<sub>tt</sub> and σ<sub>tt</sub>/σ<sub>Z</sub> are smaller than those of the theory predictions.
Relative uncertainties around 2-3 % (limited by systematic uncertainties).

This analysis performs the measurement of the substructure of top quark decays using the lepton+jets and all-hadronic final states in the boosted regime.

#### Motivation:

- Poor modelling of jet substructure in data by current MC generators.
- Effects beyond the SM can appear as modifications of the top-quark substructure.
- High sensitivity to some MC parameters.

**Unfolding** is performed using Iterative Bayesian approach.

## Substructure observables considered in the studies:

| Variable                      | Motivation                         |  |
|-------------------------------|------------------------------------|--|
|                               | Tagging, sensitive to FSR/ISR      |  |
| N-Subjettiness Ratios         | variations, sensitive to generator |  |
|                               | variation                          |  |
|                               | Tagging, sensitive to FSR          |  |
| Energy-Correlation Functions  | variations, sensitive to generator |  |
|                               | variation                          |  |
|                               | Tagging, sensitive to FSR          |  |
| ECF Variables                 | variations, sensitive to generator |  |
|                               | variation                          |  |
| h Splitting Expetienc         | Sensitive to FSR/ISR variations,   |  |
| $\kappa_t$ spinning Functions | sensitive to generator variation   |  |
| Eccentricity                  | Sensitive to FSR variations        |  |
|                               | Sensitive to FSR/ISR variations,   |  |
| Generalised Angularities      | sensitive to generator variation   |  |
| 0                             | Sensitive to FSR/ISR variations,   |  |
| $\mathcal{Q}_W$               | sensitive to generator variation   |  |

#### **Results: Single Differential:**



•  $\tau_{32}$  is one of the variables with worst agreement with the data.

• In lepton+jets channel PWG+H7 and PWG+PY8 FSR down give the best agreement with data.

#### **Results: Double Differential:**



• The predictions of  $\tau_{32}$  versus  $m_{top}$  show poor agreement in the central  $m_{top}$ .

#### **Results: Double Differential:**



• The predictions of  $D_2$  correlations with  $m_{top}$  and  $p_T^{top}$  are generally in better agreement with the unfolded data than  $\tau_{32}$ 

## Top-quark mass combination ATLAS/CMS run I (arXiv:2402.08713)

This analysis performs the combination of fifteen top-quark mass measurements performed by the ATLAS and CMS experiment at the LHC for 7, 8 TeV analysis in different final state channels.

Metodology:

- Use Best Linear Unbiased Estimator method (BLUE).
- Must calculate/estimate the correlation between the measurements to get final covariance matrix.

Result:

 $m_t = 172.52 \pm 0.14 ({
m stat}) \pm 0.30 ({
m syst})$  GeV (  $\sim 0.2$  % precision)

The combination achieves an improvement in the total uncertainty of 31% relative to the most precise input measurement.



## Top-quark mass using dileptonic invariant mass(ATLAS-CONF-2022-058)



- Select top pairs dilepton channel
- Generate templates for *m*<sub>lb</sub> distribution as a function of *m*<sub>top</sub>.
- DNN for event reconstruction.
- Likelihood fit to find best value for *m<sub>top</sub>*.



 $m_t = 172.21 \pm 0.20 (stat) \pm 0.67 (syst) \pm 0.39 (recoil) GeV$ 

Leading systematic uncertainties: JES, recoil scheme, ME matching, color reconnection

### Top-quark mass using a leptonic invariant mass(arXiv:2209.00583)

- Uses the semileptonic channel, data with 36.1<sup>-1</sup> of luminosity.
- *m*<sub>lμ</sub> is reconstructed with a lepton (*e* or μ) from W boson and a soft muon originating from a b-quark decays.
- Likelihood fit to find best value for  $m_{top}$ .

#### Motivation:

- Compared to the standard direct reconstruction methods:
  - Smaller sensitivity to the JES/JER.
  - Less sensitivity to top-quark production modelling.



#### Result:

 $m_t = 174.41 \pm 0.39({
m stat}) \pm 0.66({
m syst}) \pm 0.25({
m recoil})$  GeV

## Quantum entanglement in events with top-quark pairs (arXiv:2311.07288)

**Quantum Entanglement** is the phenomena that the quantum state of each particle cannot be described independently of the state of other.

#### Motivation:

- Top quark properties allows us to test Quantum Entanglement.
- Not explicitly measured before between a pair of quarks.
- Use dilepton channel: leptons carry 100 % of the spin information of their parent top quark.

**Condition for entanglement**: tr[C] + 1 < 0, where *C* is the spin correlations matrix.

if 
$$D = tr[C]/3$$
 where  $D = -3 < cos\phi >$   
 $\rightarrow D < -1/3$ 

#### $cos(\phi)$ detector distribution and D values:



## Quantum entanglement in events with top-quark pairs (arXiv:2311.07288)

- Select the most sensitive kinematical region: m<sub>tt̄</sub> < 380 GeV (Eur. Phys. J. Plus (2021)).
- Obtain the measured D from calibration curve.
- Measurement at particle level to reduce parton shower uncertainty.



Particle-level Invariant Mass Range [GeV]

Results:

$$D = -0.537 \pm 0.002[stat.] \pm 0.019[syst.]$$
 for  $m_{t\bar{t}} < 380$ ,

First observation of quantum entanglement in top quark events

- LHC provided the largest top quark data sets ever.
- Many measurements with Run-2 data confirm good agreements with SM expectations.
- First Run-3 measurements are being published.
- Many precision measurements are limited by modelling uncertainties. Differential measurements improve them.
- Highlight selection of the latest ATLAS publications have presented in this talk (top public result webpage).
- Other interesting results:
  - t-channel production at 5 TeV (arXiv:2310.01518).
  - $t\bar{t}$  production at 8.16 TeV (ATLAS-CONF-2023-063).

## BACK UP

#### Unfolding:

- Unfolding performed using Iterative Bayesian approach.
- Studying the average correlation factor, we have selected 6 as number of iterations for all observables.
- Unfolding Tests: Stress Test
  - Reweight the nominal prediction at both reco- and particle-level using the same stressing function f(x).
  - Calculate the ratio of the unfolded reweighted-reco to the reweighted-particle.
  - This ratio should be 1 if the unfolding is unbiased when subjected to the stress



## $t\overline{t}$ cross-section and $t\overline{t}/Z$ cross-section ratio using LHC Run 3 (arXiv:2308.09529)

Observed impact of the different sources of uncertainty on the  $t\bar{t}$  and Z-boson cross sections and their ratio R

|              | Category                       | Uncertainty [%]     |                                          |                  |
|--------------|--------------------------------|---------------------|------------------------------------------|------------------|
|              |                                | $\sigma_{t\bar{t}}$ | $\sigma^{\text{fid.}}_{Z \to \ell \ell}$ | $R_{t\bar{t}/Z}$ |
| tī           | tī parton shower/hadronisation | 0.9                 | < 0.2                                    | 0.9              |
|              | $t\bar{t}$ scale variations    | 0.4                 | < 0.2                                    | 0.4              |
|              | tt normalisation               | -                   | < 0.2                                    | -                |
|              | Top quark $p_T$ reweighting    | 0.6                 | < 0.2                                    | 0.6              |
| Ζ            | Z scale variations             | < 0.2               | 0.4                                      | 0.3              |
| Bkg.         | Single top modelling           | 0.6                 | < 0.2                                    | 0.6              |
| -            | Diboson modelling              | < 0.2               | < 0.2                                    | 0.2              |
|              | ttV modelling                  | < 0.2               | < 0.2                                    | < 0.2            |
|              | Fake and non-prompt leptons    | 0.6                 | < 0.2                                    | 0.6              |
| Lept.        | Electron reconstruction        | 1.2                 | 1.0                                      | 0.4              |
| -            | Muon reconstruction            | 1.4                 | 1.4                                      | 0.3              |
|              | Lepton trigger                 | 0.4                 | 0.4                                      | 0.4              |
| Jets/tagging | Jet reconstruction             | 0.4                 | -                                        | 0.4              |
|              | Flavour tagging                | 0.4                 | -                                        | 0.3              |
|              | PDFs                           | 0.5                 | < 0.2                                    | 0.5              |
|              | Pileup                         | 0.7                 | 0.8                                      | < 0.2            |
|              | Luminosity                     | 2.3                 | 2.2                                      | 0.3              |
|              | Systematic uncertainty         | 3.2                 | 2.8                                      | 1.8              |
|              | Statistical uncertainty        | 0.3                 | 0.02                                     | 0.3              |
|              | Total uncertainty              | 3.2                 | 2.8                                      | 1.9              |

## Top-quark mass combination ATLAS/CMS run I (arXiv:2402.08713)

Correlation strengths  $\rho$  of the systematic uncertainty categories between ATLAS and CMS, as used in the combination

| Uncertainty category | ρ    | Scan range     | $\Delta m_t/2$<br>[MeV] | $\Delta \sigma_{m_t}/2$<br>[MeV] |
|----------------------|------|----------------|-------------------------|----------------------------------|
| IES 1                | 0    | _              |                         |                                  |
| IES 2                | 0    | [-0.25, +0.25] | 8                       | 7                                |
| JES 3                | 0.5  | [+0.25, +0.75] | 1                       | <1                               |
| b-JES                | 0.85 | [+0.5, +1]     | 26                      | 5                                |
| g-JES                | 0.85 | [+0.5, +1]     | 2                       | $<\!\!1$                         |
| 1-JES                | 0    | [-0.25, +0.25] | 1                       | < 1                              |
| CMS JES 1            | _    |                | _                       | _                                |
| JER                  | 0    | [-0.25, +0.25] | 5                       | 1                                |
| Leptons              | 0    | [-0.25, +0.25] | 2                       | 2                                |
| b tagging            | 0.5  | [+0.25, +0.75] | 1                       | 1                                |
| $p_{T}^{miss}$       | 0    | [-0.25, +0.25] | < 1                     | $<\!\!1$                         |
| Pileup               | 0.85 | [+0.5, +1]     | 2                       | $<\!1$                           |
| Trigger              | 0    | [-0.25, +0.25] | <1                      | <1                               |
| ME generator         | 0.5  | [+0.25, +0.75] | <1                      | 4                                |
| QCD radiation        | 0.5  | [+0.25, +0.75] | 7                       | 1                                |
| Hadronization        | 0.5  | [+0.25, +0.75] | 1                       | < 1                              |
| CMS b hadron $B$     | _    |                | _                       | _                                |
| Color reconnection   | 0.5  | [+0.25, +0.75] | 3                       | 1                                |
| Underlying event     | 0.5  | [+0.25, +0.75] | 1                       | $<\!\!1$                         |
| PDF                  | 0.85 | [+0.5, +1]     | 1                       | < 1                              |
| CMS top quark $p_T$  | —    | _              | _                       | _                                |
| Background (data)    | 0    | [-0.25, +0.25] | 8                       | 2                                |
| Background (MC)      | 0.85 | [+0.5, +1]     | 2                       | <1                               |
| Method               | 0    | _              | _                       | _                                |
| Other                | 0    | _              | _                       | _                                |

## Top-quark mass combination ATLAS/CMS run I (arXiv:2402.08713)

## The measured $m_{top}$ is given together with the statistical top and systematic uncertainties in GeV for the $m_{lb}^{High}$ observable

|                                               | mtop [GeV]      |
|-----------------------------------------------|-----------------|
| Result                                        | 172.21          |
| Statistics                                    | 0.20            |
| Method                                        | $0.05\pm0.04$   |
| Matrix-element matching                       | $0.40 \pm 0.06$ |
| Parton shower and hadronisation               | $0.05 \pm 0.05$ |
| Initial- and final-state QCD radiation        | $0.17 \pm 0.02$ |
| Underlying event                              | $0.02 \pm 0.10$ |
| Colour reconnection                           | $0.27 \pm 0.07$ |
| Parton distribution function                  | $0.03 \pm 0.00$ |
| Single top modelling                          | $0.01 \pm 0.01$ |
| Background normalisation                      | $0.03 \pm 0.02$ |
| Jet energy scale                              | $0.37 \pm 0.02$ |
| b-jet energy scale                            | $0.12 \pm 0.02$ |
| Jet energy resolution                         | $0.13 \pm 0.02$ |
| Jet vertex tagging                            | $0.01 \pm 0.01$ |
| <i>b</i> -tagging                             | $0.04 \pm 0.01$ |
| Leptons                                       | $0.11 \pm 0.02$ |
| Pile-up                                       | $0.06 \pm 0.01$ |
| Recoil effect                                 | $0.39 \pm 0.09$ |
| Total systematic uncertainty (without recoil) | $0.67 \pm 0.05$ |
| Total systematic uncertainty (with recoil)    | $0.77 \pm 0.06$ |
| Total uncertainty (without recoil)            | $0.70 \pm 0.05$ |
| Total uncertainty (with recoil)               | $0.80 \pm 0.06$ |