Recent physics results from Belle II including $B^{+} \rightarrow K^{+} \nu \bar{\nu}$

Overview

- Quick intro. to Belle II
- Test of LFU at Belle II
\checkmark Exclusive $R\left(D^{(*)}\right)$
\checkmark Inclusive $R\left(X_{\tau / \ell}\right)$
- $B^{+} \rightarrow K^{+} \nu \bar{\nu}$

$$
\begin{aligned}
& \text { arXiv:2401.02840 } \\
& \text { submitted to PRD } \\
& \begin{array}{l}
\text { arXiv:2311.07248 } \\
\text { submitted to PRL }
\end{array} \text { Belle I } \\
& \text { arXiv:2311.14647 } \\
& \text { PRD accepted }
\end{aligned}
$$

Part II charm baryons $\square \square$

- $\Xi_{c}^{0} \rightarrow \Xi^{0} h^{0}\left(h^{0}=\pi^{0}, \eta, \eta^{\prime}\right)$
in preparation for H HEP \mathcal{P}
- new results on $\Upsilon(10753) \xrightarrow{\text { Part III Energy scan for bottomonia }} \underset{\substack{\text { arXiv:2401.12021, JHEP subbmited } \\ \text { arXiv:231.13043, PRD aceeted }}}{ }$
B
- Closing

SuperKEKB

Belle II

- $\mathcal{B}(\Upsilon(4 S) \rightarrow B \bar{B})>96 \%$, with $p_{B}^{C M} \sim 0.35 \mathrm{GeV} / c$
- nothing else but $B \bar{B}$ in the final state
\therefore if we know (E, \vec{p}) of one B, the other B is also constrained

See Appendix, p.35-37.
"B-tagging" unique to $e^{+} e^{-} B$-factory

Part I B decays

LFU test via $R(D)$ vs. $R\left(D^{*}\right)$

For details of the Belle II $R\left(D^{*}\right)$ measurement, see Appendix, p.38-40.

Inclusive LFU test w/ $R\left(X_{\tau / \ell}\right)$

- Why measure $R\left(X_{\tau / \ell}\right)$?
- different systematics from $R\left(D^{(*)}\right)$
- hence, a complementary test of LFU
- Procedure
- use $\tau \rightarrow \ell \nu_{\tau} \bar{\nu}_{\ell}$ modes
- select events with $B_{\text {tag }}+\ell$, with remaining particles attributed to X
- distinguish signal from background by using $M_{\text {miss }}^{2}$ and p_{t}^{B}
- background mostly from $b \rightarrow c \rightarrow \ell$; some continuum and fake leptons

$R\left(X_{\tau / \ell}\right)$, event distributions

arXiv:2311.07248 submitted to PRL

$R\left(X_{\tau / \ell}\right)$ Results

$R\left(X_{\tau / \ell}\right)=0.228 \pm 0.016 \pm 0.036$
$R\left(X_{\tau / e}\right)=0.232 \pm 0.020 \pm 0.037$
$R\left(X_{\tau / \mu}\right)=0.222 \pm 0.027 \pm 0.050$

Consistent with SM: 0.223 ± 0.005
M. Freytsis et al. PRD 92, 054018 (2015)
M. Rahimi, K. K. Vos, JHEP 2022, 7 (2022)
Z. Ligeti et al. PRD 105, 073009 (2022)

$R\left(X_{\tau / \ell}\right)$, compared with $R\left(D^{(*)}\right)$

Search for $B^{+} \rightarrow K^{+} \nu \bar{\nu}$ at Belle II

- In the SM,
- $\mathscr{B}\left(B^{+} \rightarrow K^{+} \nu \bar{\nu}\right)=(5.58 \pm 0.37) \times 10^{-6[4]}$
${ }^{[4]}$ W. G. Parrott et al. PRD 107, 014511 (2023) incl. long-distance contribution from $B \rightarrow \tau \nu$)
- sensitive to new physics BSM, e.g.
- leptoquarks,
- axions,
- DM particles, etc.

$$
\begin{aligned}
\mathcal{B}\left(B^{+} \rightarrow K^{+} \nu \bar{\nu}\right) & =\left(1.9_{-1.3-0.7}^{+1.3+0.8}\right) \times 10^{-5} \\
& <4.1 \times 10^{-5} @ 90 \% \mathrm{CL}
\end{aligned}
$$

Two ways of tagging

- Features of HTA
- uses full decay chain information of of $B_{\text {tag }}$
- high high purity, very low efficiency
- uses BDT for signal extraction ($\mathrm{BDT}_{\mathrm{h}}$)
- Features of ITA
- exploits inclusive properties of $B_{\text {tag }}$
- high efficiency, low purity
- BDTs in two stages (BDT_{1} mostly for $q \bar{q}$; BDT_{2} for final signal extraction)

Signal efficiency (ITA vs. HTA)

for BDT efficiency validation,
see p. 42 in the Appendix

$$
q^{2}=M(\nu \bar{\nu})^{2}
$$

Closure test (ITA)

Result:

- $\mathscr{B}\left(B^{+} \rightarrow \pi^{+} K^{0}\right)=(2.5 \pm 0.5) \times 10^{-5}$

Consistent with PDG:

\bar{Z}

$\mathscr{B}\left(B^{+} \rightarrow \pi^{+} K^{0}\right)=(2.3 \pm 0.08) \times 10^{-5}$

$\eta\left(\mathrm{BDT}_{2}\right)>0.98$

$$
\begin{aligned}
\mathscr{B}\left(B^{+} \rightarrow K^{+} \nu \bar{\nu}\right)_{\mathrm{HTA}} & =\left(1.1_{-0.8-0.5}^{+0.9+0.8} \times 10^{-5}\right. \\
\mathscr{B}\left(B^{+} \rightarrow K^{+} \nu \bar{\nu}\right)_{\mathrm{TTA}} & =(2.7 \pm 0.5 \pm 0.5) \times 10^{-5} \\
\mathscr{B}\left(B^{+} \rightarrow K^{+} \nu \bar{\nu}\right)_{\mathrm{comb}} & =\left(2.3 \pm 0.5_{-0.4}^{+0.5}\right) \times 10^{-5}
\end{aligned}
$$

$\mathscr{B}\left(B^{+} \rightarrow K^{+} \nu \bar{\nu}\right)$ global picture

Part II Charm baryon

Charm baryon decays $\Xi_{c}^{0} \underset{\left(h^{0}=\pi^{0}, n, \eta^{\prime}\right)}{\Xi^{0}}$

- Sensitive to (a) W-emission, and (b) W-exchange diagrams
- difficulties for theoretical predictions

Theory predictions vary in wide ranges for both BF and α

See Appendix, p. 43

- measures BF and decay asymmetry parameter α
- in a combined data set of Belle (980/fb) + Belle II (426/fb)
(a)

$$
\frac{d N}{d \cos \theta_{\Xi^{0}}} \propto 1+\alpha\left(\Xi_{c}^{0} \rightarrow \Xi^{0} h^{0}\right) \alpha\left(\Xi^{0} \rightarrow \Lambda \pi^{0}\right) \cos \theta_{\Xi^{0}}
$$

Belle

Belle II

$$
\begin{aligned}
\mathcal{B}\left(\Xi_{c}^{0} \rightarrow \Xi_{0} \pi^{0}\right) & =(6.9 \pm 0.3 \pm 0.5 \pm 1.5) \times 10^{-3} \\
\mathcal{B}\left(\Xi_{c}^{0} \rightarrow \Xi_{0} \eta\right) & =(1.6 \pm 0.2 \pm 0.2 \pm 0.4) \times 10^{-3} \\
\mathcal{B}\left(\Xi_{c}^{0} \rightarrow \Xi_{0} \eta^{\prime}\right) & =(1.2 \pm 0.3 \pm 0.1 \pm 0.3) \times 10^{-3}
\end{aligned}
$$

Belle II precision is comparable to Belle with $\sim 1 / 2$ luminosity
consistent w/ Zhong et al. [JHEP (2023)] based on SU(3)F-breaking model
$\alpha\left(\Xi_{c}^{0} \rightarrow \Xi^{0} \pi^{0}\right)$ decay asymmetry

$$
\frac{d N}{d \cos \theta_{\Xi^{0}}} \propto 1+\alpha\left(\Xi_{c}^{0} \rightarrow \Xi^{0} h^{0}\right) \alpha\left(\Xi^{0} \rightarrow \Lambda \pi^{0}\right) \cos \theta_{\Xi^{0}}
$$

$$
\alpha\left(\Xi_{c}^{0} \rightarrow \Xi^{0} \pi^{0}\right) \alpha\left(\Xi^{0} \rightarrow \Lambda \pi^{0}\right)=0.32 \pm 0.05 \text { (stat) } \quad \begin{gathered}
\text { by simultaneous fits to } \\
\text { Belle \& Belle II data sets }
\end{gathered}
$$

using $\alpha\left(\Xi^{0} \rightarrow \Lambda \pi^{0}\right)=-0.349 \pm 0.009(\mathrm{PDG})$,

$$
\alpha\left(\Xi_{c}^{0} \rightarrow \Xi^{0} \pi^{0}\right)=-0.90 \pm 0.15 \pm 0.23
$$

Part III Energy Scan for Bottomoia

Energy scan for $\Upsilon(10753)$

- Y(10753)
- first observed by Belle, [JHEP 10 (2019) 220] with 5.2σ
- in the energy dependence of $e^{+} e^{-} \rightarrow \Upsilon(n S) \pi^{+} \pi^{-}$
- \exists several competing interpretations
- Belle II result
- arxiv:2401.12021
- $e^{+} e^{-} \rightarrow \Upsilon(n S) \pi^{+} \pi^{-}$with $\Upsilon(n S) \rightarrow \mu^{+} \mu^{-}$
- confirms Belle results of $\Upsilon(10753)$

	$\mathcal{R}_{\sigma(1 S / 2 S)}^{\Upsilon(10753)}$	$\mathcal{R}_{\sigma(3 S / 2 S)}^{\Upsilon(10753)}$
Ratio	$0.46_{-0.12}^{+0.15}$	$0.10_{-0.04}^{+0.05}$
small		

Energy scan for $\Upsilon(10753)$

dipion mass distribution

- similar to both phase-space model and $\Upsilon(2 S) \rightarrow \pi^{+} \pi^{-} \Upsilon(1 S)$ for $\pi^{+} \pi^{-} \Upsilon(1 S)$
- but similar to $\Upsilon(2 S) \rightarrow \pi^{+} \pi^{-} \Upsilon(1 S)$ only for $\pi^{+} \pi^{-} \Upsilon(2 S)$
$\Upsilon(10753) \rightarrow \chi_{b J} \omega$

- cross section shows a peak at $\Upsilon(10753)$, hence a confirmation and a new decay channel
- the ratio $\chi_{b 1} \omega / \pi \pi \Upsilon(n S) \sim$ one order of magnitude higher at $\Upsilon(10753)$ than at $\Upsilon(5 S)$

$\Upsilon(10753) \rightarrow \chi_{b 0} \omega$ and $\eta_{b} \omega$

- Tetraquark interpretation of this state predicts enhancement of $\Upsilon(10753) \rightarrow \eta_{b}(1 S) \omega$
- we measure η_{b} indirectly by using recoil mass $M_{\text {recoil }}(\omega)=\sqrt{\left(E_{\mathrm{cm}}-E_{\omega}\right)^{2}-p_{\omega}^{2}}$

$$
\sigma_{\mathrm{B}}\left(e^{+} e^{-} \rightarrow \eta_{b}(1 S) \omega\right)<2.5 \mathrm{pb}
$$

$$
\sigma_{\mathrm{B}}\left(e^{+} e^{-} \rightarrow \chi_{b 0}(1 P) \omega\right)<8.7 \mathrm{pb}
$$

Summary

- Belle II has collected over $0.4 \mathrm{ab}^{-1}$ data sample in its first 3 years of operation before LS1, and started Run 2 data taking in Feb. this year.
- With the data set of $\sim 1 / 2$ the size of Belle, the physics precision of Belle II results are comparable or better in many analyses.
- Recent Belle II physics highlights include first evidence for $B^{+} \rightarrow K^{+} \nu \bar{\nu}$, and inclusive test of LFU with $B \rightarrow X \tau \nu$.
- In addition, we have presented interesting new results in charm baryons and bottomonium spectroscopy.
- Run 2 is underway with the goal of collecting a several ab^{-1} data in the next few years.

Thank you!

Appendices

Belle II Physics Mind-map

$e^{+} e^{-} \rightarrow \Upsilon(4 S)$ as a B-factory

- $\mathcal{B}(\Upsilon(4 S) \rightarrow B \bar{B})>96 \%$, with $p_{B}^{C M} \sim 0.35 \mathrm{GeV} / c$
- nothing else but $B \bar{B}$ in the final state
\therefore if we know (E, \vec{p}) of one B, the other B is also constrained

Key variables of B decays

How to handle a missing particle at Belle II?

$\bullet e^{+} e^{-} \rightarrow \Upsilon(4 S) \rightarrow B \bar{B}$

- only two B mesons in the final state
- Since the initial state is clearly determined, fully accounting one $B\left(B_{\mathrm{tag}}\right)$ makes it possible to constrain the accompanying $B\left(B_{\text {sig }}\right)$
- Having a single missing particle (e.g. ν) is usually as clean as getting all particles measured
- The price to pay is a big drop of efficiency ($<\mathcal{O}(1 \%)$)

How to handle a missing particle at Belle II?

- $e^{+} e^{-} \rightarrow \Upsilon(4 S) \rightarrow B \bar{B}$
- only two B mesons in the final state
- Since the initial state is clearly determined, fully accounting one $B\left(B_{\text {tag }}\right)$ makes it possible to constrain the accompanying $B\left(B_{\text {sig }}\right)$
- Having a single missing particle (e.g. ν) is usually as clean as getting all particles measured
- The price to pay is a big drop of efficiency ($<\mathcal{O}(1 \%)$)

Full Event Interpretation (FEI)

- FEI algorithm to reconstruct $B_{\text {tag }}$
- uses ~ 200 BDT's to reconstruct $\mathcal{O}\left(10^{4}\right)$ different B decay chains
- assign signal probability of being correct B_{tag}

Comput Softw Big Sci 3, 6 (2019)

$B^{0} B^{+}$

arXiv:2008.060965

Belle II preliminary

$R\left(D^{*}\right)$ from Belle II

- First $R\left(D^{*}\right)$ result from Belle II

$$
R\left(D^{*}\right) \equiv \frac{\mathscr{B}\left(B \rightarrow D^{*} \tau^{+} \nu\right)}{\mathscr{B}\left(B \rightarrow D^{*} \ell^{+} \nu\right)}
$$

- Analysis features
- Use hadronic B-tagging with FEI (slide 34)
- leptonic τ decays, $\tau^{+} \rightarrow \ell^{+} \nu_{\ell} \bar{\nu}_{\tau}$
- three D^{*} modes: $D^{*+} \rightarrow D^{0} \pi^{+}, D^{+} \pi^{0}$ and $D^{* 0} \rightarrow D^{0} \pi^{0}$
- Signal $\left(B \rightarrow D^{*} \tau^{+} \nu\right) \&$ Normalization $\left(B \rightarrow D^{*} \ell^{+} \nu\right)$
- extracted simultaneously
- by fitting 2D ($M_{\text {miss }}^{2}, E_{\mathrm{ECL}}$)

$R\left(D^{*}\right)$ from Belle II

- Signal $\left(B \rightarrow D^{*} \tau^{+} \nu\right) \&$ Normalization $\left(B \rightarrow D^{*} \ell^{+} \nu\right)$
- extracted simultaneously
- by fitting 2D ($M_{\text {miss }}^{2}, E_{\mathrm{ECL}}$)

$$
\begin{aligned}
& M_{\mathrm{miss}}^{2} \equiv\left(p_{e^{+} e^{-}}-p_{B_{\mathrm{tag}}}-p_{D^{*}}-p_{\ell}\right)^{2} \\
& E_{\mathrm{ECL}}=\underset{\mathrm{EM} \text { calorimeter }}{ } \quad \begin{array}{l}
\text { extra energy (unmatched) in the }
\end{array}
\end{aligned}
$$

$R\left(D^{*}\right)$ from Belle II

Fit projections for the sub-mode $D^{*+} \rightarrow D^{0} \pi^{+}$

E_{ECL} for entire $M_{\text {miss }}^{2}$ region

E_{ECL} for signal-enhanced region

$$
1.5<M_{\text {miss }}^{2}<6.0 \mathrm{GeV}^{2}
$$

$$
R\left(D^{*}\right)=0.262_{-0.039-0.032}^{+0.041+0.035}
$$

Systematics

- dominant sources: E_{ECL} PDF shape, MC statistics

some corrections \& validations

FIG. 4. Efficiency of reconstructing an energy deposit in the ECL matched to the K_{L}^{0} direction as a function of the K_{L}^{0} energy for data and simulation selected with the ITA analysis.

FIG. 22. Distribution of ΔE in data obtained for $B^{+} \rightarrow$ $\left(K^{+}, \pi^{+}\right) D^{0}$ decays reconstructed as $B^{+} \rightarrow K^{+} \nu \bar{\nu}$ events with the daughters from the D^{0} decays removed.

The relative abundance $\bar{D}^{0} K^{+}$to $\bar{D}^{0} \pi^{+}$for data vs. MC is found to be consistent $w /$ expectation with 1.03 ± 0.09

Signal efficiency validation (ITA)

Charm baryon decays $\Xi_{c}^{0} \rightarrow \Xi^{0} h^{0}$
 $$
\left(h^{0}=\pi^{0}, \eta, \eta^{\prime}\right)
$$

Table 1. Theoretical predictions for the branching fractions and decay asymmetry parameters for $\Xi_{c}^{0} \rightarrow \Xi^{0} h^{0}$ decays. Branching fractions are given in units of 10^{-3}.

Reference	Model	$\mathcal{B}\left(\Xi_{c}^{0} \rightarrow \Xi^{0} \pi^{0}\right)$	$\mathcal{B}\left(\Xi_{c}^{0} \rightarrow \Xi^{0} \eta\right)$	$\mathcal{B}\left(\Xi_{c}^{0} \rightarrow \Xi^{0} \eta^{\prime}\right)$	$\alpha\left(\Xi_{c}^{0} \rightarrow \Xi^{0} \pi^{0}\right)$
Körner, Krämer [5]	quark	0.5	3.2	11.6	0.92
Xu, Kamal [7]	pole	7.7	-	-	0.92
Cheng, Tseng [8]	pole	3.8	-	-	-0.78
Cheng, Tseng [8]	CA	17.1	-	-	0.54
Żenczykowski [9]	pole	6.9	1.0	9.0	0.21
Ivanov et al. $[6]$	quark	0.5	3.7	4.1	0.94
Sharma, Verma [11]	CA	-	-	-	-0.8
Geng et al. $[12]$	$\mathrm{SU}(3)_{\mathrm{F}}$	4.3 ± 0.9	$1.7_{-1.7}^{+1.0}$	$8.6_{-6.3}^{+11.0}$	-
Geng et al. $[13]$	$\mathrm{SU}(3)_{\mathrm{F}}$	7.6 ± 1.0	10.3 ± 2.0	9.1 ± 4.1	$-1.00_{-0.00}^{+0.07}$
Zhao et al. $[14]$	$\mathrm{SU}(3)_{\mathrm{F}}$	4.7 ± 0.9	8.3 ± 2.3	7.2 ± 1.9	-
Zou et al. $[10]$	pole	18.2	26.7	-	-0.77
Huang et al. $[15]$	$\mathrm{SU}(3)_{\mathrm{F}}$	2.56 ± 0.93	-	-	-0.23 ± 0.60
Hsiao et al. $[16]$	$\mathrm{SU}(3)_{\mathrm{F}}$	6.0 ± 1.2	$4.2_{-1.3}^{+1.6}$	-	-
Hsiao et al. $[16]$	$\mathrm{SU}(3)_{\mathrm{F}}-$ breaking	3.6 ± 1.2	7.3 ± 3.2	-	-
Zhong et al. $[17]$	$\mathrm{SU}(3)_{\mathrm{F}}$	$1.13_{-0.49}^{+0.59}$	1.56 ± 1.92	$0.683_{-3.268}^{+3.272}$	$0.50_{-0.35}^{+0.37}$
Zhong et al. $[17]$	$\mathrm{SU}(3)_{\mathrm{F}}-$ breaking	$7.74_{-2.32}^{+2.52}$	$2.43_{-2.90}^{+2.79}$	$1.63_{-5.14}^{+5.09}$	$-0.29_{-0.20}^{+0.20}$
Xing et al. $[18]$	$\mathrm{SU}(3)_{\mathrm{F}}$	1.30 ± 0.51	-	-	-0.28 ± 0.18

