# **Recent physics results from Belle II** including $B^+ \to K^+ \nu \bar{\nu}$



Youngjoon Kwon (Yonsei U.) Apr. 11, 2024 for DIS 2024



# Overview

- Quick intro. to Belle II
- Test of LFU at Belle II  $\checkmark$  Exclusive  $R(D^{(*)})$  $\checkmark$  Inclusive  $R(X_{\tau/\ell})$

Part I *B decays* 

- $\Xi_c^0 \to \Xi^0 h^0 \ (h^0 = \pi^0, \eta, \eta')$ 
  - Part III Energy scan for bottomonia

Part II charm baryons

- new results on  $\Upsilon(10753)$
- Closing

 $B^+ \to K^+ \nu \overline{\nu}$ 





in preparation for JHEP

arXiv:2401.02840 submitted to PRI

arXiv:2311.07248

submitted to PRL



arXiv:2401.12021, JHEP submitted arXiv:2312.13043, PRD accepted



# SuperKEKB





•  $\mathcal{B}(\Upsilon(4S) \rightarrow B\overline{B}) > 96\%$ , with  $p_B^{CM} \sim 0.35$  GeV/c

• nothing else but  $B\overline{B}$  in the final state See Appendix, p.35-37.  $\therefore$  if we know  $(E, \vec{p})$  of one *B*, the other *B* is also constrained "B-tagging" up

.35-37. unique to  $e^+e^-$  B-factory







Updated on 2024/04/04 06:07 JST

Total integrated luminosity [fb<sup>-1</sup>] 005

Belle (1999-2010) Luminosity •  $\int \mathscr{L}_{total} = 1039 \text{ fb}^{-1}$ 980 fb<sup>-1</sup> for  $\Xi_c^0$ •  $\int \mathscr{L}_{\Upsilon(4S)} = 711 \text{ fb}^{-1}$ 

# Part I B decays





For details of the Belle II  $R(D^*)$  measurement, see Appendix, p.38-40.

Recent physics results from Belle II incl.  $B^+ \rightarrow K^+ \nu \bar{\nu}$ 

Youngjoon Kwon (Yonsei U.)

# Inclusive LFU test w/ $R(X_{\tau/\ell})$

- Why measure  $R(X_{\tau/\ell})$ ?
  - different systematics from  $R(D^{(*)})$
  - hence, a complementary test of LFU

## Procedure

LFU test in Belle II

- use  $\tau \to \ell \nu_\tau \overline{\nu}_\ell$  modes
- select events with  $B_{\text{tag}} + \ell$ , with remaining particles attributed to X
- distinguish signal from background by using  $M^2_{\rm miss}$  and  $p_\ell^B$
- background mostly from  $b \to c \to \ell$ ; some continuum and fake leptons



arXiv:2311.07248 submitted to PRL







Youngjoon Kwon (Yonsei U.)

# $R(X_{\tau/\ell})$ Results

## $R(X_{\tau/\ell}) = 0.228 \pm 0.016 \pm 0.036$

 $R(X_{\tau/e}) = 0.232 \pm 0.020 \pm 0.037$  $R(X_{\tau/\mu}) = 0.222 \pm 0.027 \pm 0.050$ 





Recent physics results from Belle II incl.  $B^+ \to K^+ \nu \bar{\nu}$ 

arXiv:2311.07248 submitted to PRL



 $p_{e}^{B}$  [GeV/c]

# $R(X_{\tau/\ell})$ , compared with $R(D^{(*)})$



Youngjoon Kwon (Yonsei U.)







# Search for $B^+ \to K^+ \nu \overline{\nu}$ at Belle II

- In the SM,
  - $\mathscr{B}(B^+ \to K^+ \nu \bar{\nu}) = (5.58 \pm 0.37) \times 10^{-6} \, [4]$

- sensitive to new physics BSM, e.g.
  - leptoquarks,
  - axions,
  - DM particles, etc. lacksquare





Recent physics results from Belle II incl.  $B^+ \rightarrow K^+ \nu \bar{\nu}$ 

Youngjoon Kwon (Yonsei U.)



### <sup>[4]</sup> W. G. Parrott et al. <u>PRD 107, 014511 (2023)</u> incl. long-distance contribution from $B \rightarrow \tau \nu$ )





- Features of HTA
  - uses full decay chain information of of  $B_{\text{tag}}$
  - high high purity, very low efficiency
  - uses BDT for signal extraction  $(BDT_h)$

- Features of ITA

  - high efficiency, low purity

## • exploits inclusive properties of $B_{\text{tag}}$ BDTs in two stages (BDT<sub>1</sub> mostly for $q\bar{q}$ ; BDT<sub>2</sub> for final signal extraction)

# Signal efficiency (ITA vs. HTA)

after multi-variate analysis for ROE with BDT



 $q^2 = M(\nu\bar{\nu})^2$ 

Recent physics results from Belle II incl.  $B^+ \rightarrow K^+ \nu \bar{\nu}$ 

arXiv:2311.14647 **PRD** accepted





### for BDT efficiency validation, see p. 42 in the Appendix

# **Closure test (ITA)**



### Assume B is at rest in the $\Upsilon(4S)$ rest-frame (c = 1)

Recent physics results from Belle II incl.  $B^+ \rightarrow K^+ \nu \bar{\nu}$ 

Youngjoon Kwon (Yonsei U.)



## • Pion ID instead of kaon ID • Different $q_{rec}^2$ bin boundaries <sup>8</sup> Only on-resonance data used for fit 8 Only normalization systematics included

## • $\mathscr{B}(B^+ \to \pi^+ K^0) = (2.5 \pm 0.5) \times 10^{-5}$

## • $\mathscr{B}(B^+ \to \pi^+ K^0) = (2.5 \pm 0.5) \times 10^{-5}$

# Consistent with PDG: Measured values consistent with $\mathcal{B}(\overline{\mathcal{D}}^+, \overline{\mathcal{D}}^+, \overline{\mathcal{K}}^0) \stackrel{=}{=} (2.3 \pm 0.08)$

# $B^+ \rightarrow K^+ \nu \overline{\nu} result (ITA)$



Recent physics results from Belle II incl.  $B^+ \rightarrow K^+ \nu \bar{\nu}$ 

arXiv:2311.14647 **PRD** accepted



Apr. 11, 2024 for DIS 2024 @ Grenoble, France

## $B^+ \rightarrow K^+ \nu \overline{\nu}$ post-fit distributions (ITA)

## $\eta(BDT_2) > 0.98$



Recent physics results from Belle II incl.  $B^+ \to K^+ \nu \bar{\nu}$ 

Apr. 11, 2024 for DIS 2024 @ Grenoble, France

arXiv:2311.14647 **PRD** accepted







 $\mathscr{B}(B^+ \to K^+ \nu \bar{\nu})_{\text{HTA}} = (1.1^{+0.9+0.8}_{-0.8-0.5}) \times 10^{-5}$  $\mathscr{B}(B^+ \to K^+ \nu \bar{\nu})_{\text{ITA}} = (2.7 \pm 0.5 \pm 0.5) \times 10^{-5}$ 

 $\mathscr{B}(B^+ \to K^+ \nu \bar{\nu})_{\text{comb}} = (2.3 \pm 0.5^{+0.5}_{-0.4}) \times 10^{-5}$ 

Recent physics results from Belle II incl.  $B^+ \rightarrow K^+ \nu \bar{\nu}$ 

Youngjoon Kwon (Yonsei U.)





Recent physics results from Belle II incl.  $B^+ \rightarrow K^+ \nu \bar{\nu}$ 

Youngjoon Kwon (Yonsei U.)

arXiv:2311.14647 **PRD** accepted



# Part II Charm baryon

Recent physics results from Belle II incl.  $B^+ \rightarrow K^+ \nu \bar{\nu}$ 

Youngjoon Kwon (Yonsei U.)



# Charm baryon decays $\Xi_{c}^{0} \rightarrow \Xi_{c}^{0} h^{0}$ $(h^{0} = \pi^{0}, \eta, \eta')$

- Sensitive to (a) W-emission, and (b) W-exchange diagrams
  - difficulties for theoretical predictions
- measures BF and decay asymmetry parameter  $\alpha$ 
  - in a combined data set of Belle (980/fb) + Belle II (426/fb)



Recent physics results from Belle II incl.  $B^+ \rightarrow K^+ \nu \bar{\nu}$ 

Youngjoon Kwon (Yonsei U.)



### Theory predictions vary in wide ranges for both BF and $\alpha$ See Appendix, p.43



 $\alpha(\Xi_{c}^{0} \rightarrow \Xi^{0}\pi^{0})$  decay asymmetry





 $\alpha(\Xi_c^0 \to \Xi^0 \pi^0) \alpha(\Xi^0 \to \Lambda \pi^0) = 0.32 \pm 0.05 \text{(stat)}$ 

by simultaneous fits to Belle & Belle II data sets

using  $\alpha(\Xi^0 \to \Lambda \pi^0) = -0.349 \pm 0.009 \text{ (PDG)},$ 

 $\alpha(\Xi_c^0 \to \Xi^0 \pi^0) = -0.90 \pm 0.15 \pm 0.23$ 

Recent physics results from Belle II incl.  $B^+ \rightarrow K^+ \nu \bar{\nu}$ 

Youngjoon Kwon (Yonsei U.)

in preparation for JHEP





### consistent w/ Pole model, CA, and $SU(3)_F$ approaches

# Part II Energy Scan for Bottomoia

Recent physics results from Belle II incl.  $B^+ \rightarrow K^+ \nu \bar{\nu}$ 

Youngjoon Kwon (Yonsei U.)



# **Energy scan for**

## • Υ(10753)

- first observed by Belle, [JHEP 10 (20 g upper 220] with 5.2σ
  in the energy dependence of e<sup>+</sup>e<sup>-</sup> → Υ(nS)π<sup>+</sup>π<sup>-</sup>
  ∃ several competing interpretations
- $\exists$  several competing interpretations

## Belle II result

- arxiv:2401.12021
- $e^+e^- \rightarrow \Upsilon(nS)\pi^+\pi^-$  with  $\Upsilon(nS) \to \mu^+ \mu^-$
- confirms Belle results of  $\Upsilon(10753)$



Youngjo

Recent physics results from Belle II incl.  $B^+ \rightarrow K^+ \nu \bar{\nu}$ 



# Energy scan for $\Upsilon(10753)$



arXiv:2401.12021 JHEP submitted







# $\Upsilon(10753) \rightarrow \chi_{b0}\omega \text{ and } \eta_b\omega$

- Tetraquark interpretation of this state predicts enhancement of  $\Upsilon(10753) \rightarrow \eta_b(1S)\omega$
- we measure  $\eta_b$  indirectly by using recoil mass  $M_{\text{recoil}}(\omega) = \sqrt{(E_{\text{cm}} E_{\omega})^2 p_{\omega}^2}$



arXiv:2312.13043 PRD accepted





 $\frac{\Gamma(\omega\eta_b)}{\Gamma(\Upsilon\pi^+\pi^-)} \sim 30$ 

## $\sigma_{\rm B}(e^+e^- \to \eta_b(1S)\omega) < 2.5\,{\rm pb},$ $\sigma_{\rm B}(e^+e^- \rightarrow \chi_{b0}(1P)\omega) < 8.7 \,\mathrm{pb.}$

# Summary

- Belle II has collected over  $0.4 \text{ ab}^{-1}$  data sample in its first 3 years of operation before LS1, and started Run 2 data taking in Feb. this year.
- With the data set of  $\sim 1/2$  the size of Belle, the physics precision of Belle II results are comparable or better in many analyses.
- Recent Belle II physics highlights include first evidence for  $B^+ \to K^+ \nu \bar{\nu}$ , and inclusive test of LFU with  $B \to X \tau \nu$ .
- In addition, we have presented interesting new results in charm baryons and bottomonium spectroscopy.
- Run 2 is underway with the goal of collecting a several  $ab^{-1}$  data in the next few years.





## **Belle II Physics Mind-m**



- -

| nap                                               |
|---------------------------------------------------|
| CP                                                |
| es                                                |
| ons, Dalitz analyses                              |
| avor violation                                    |
| ays<br>Neasurements                               |
| Vtd/Vts from penguins                             |
| Exclusive measurements                            |
| -D(*) tau nu, lepton universality                 |
| upha, beta, gamma                                 |
| ents Direct T violation                           |
| vew physics phases in b->s: B->phi Ks. B->eta' Ks |

B-->K pi, pi pi Direct CPV, isospin sum rules

B-->K\* gamma and radiative penguins, B-->K(\*) nu nubar

<sup>froweak</sup> Penguins: b-->s I+I-, lepton universality, NP

gamma determinations

### Image courtesy of Tom Browder



# Key variables of B decays

Id: low background and matic constraints.

event shape



| 3/ |
|----|

## How to handle a missing particle at Belle II?

$$\bullet e^+e^- \to \Upsilon(4S) \to B\overline{B}$$

- only two B mesons in the final state
- Since the initial state is clearly determined, fully accounting one  $B(B_{tag})$  makes it possible to constrain the accompanying  $B(B_{sig})$
- Having a single missing particle (e.g.  $\nu$ ) is usually as clean as getting all particles measured
- The price to pay is a big drop of efficiency ( < O(1%))



Studies of missing-energy final states at Belle II

Youngjoon Kwon (Yonsei U.)

## How to handle a missing particle at Belle II?

## ${}^{\bullet}e^+e^- \to \Upsilon(4S) \to B\overline{B}$

- only two *B* mesons in the final state
- Since the initial state is clearly determined, fully accounting one  $B(B_{tag})$  makes it possible to constrain the accompanying  $B(B_{sig})$
- Having a single missing particle (e.g. ν) is usually as clean as getting all particles measured
- The price to pay is a big drop of efficiency ( < O(1%))



Studies of missing-energy final states at Belle II

Youngjoon Kwon (Yonsei U.)

**PNU-IBS 2023** 

Imiss

\*\*\*\*\*\*\*\*\*\*

# Full Event Interpretation (FEI)

- FEI algorithm to reconstruct  $B_{tag}$ 
  - uses ~200 BDT's to reconstruct  $\mathcal{O}(10^4)$  different *B* decay chains
  - assign signal probability of being correct  $B_{tag}$

Comput Softw Big Sci 3, 6 (2019)





### arXiv:2008.060965

# $R(D^*)$ from Belle II



Belle II



Recent physics results from Belle II incl.  $B^+ \rightarrow K^+ \nu \bar{\nu}$ 

arXiv:2401.02840 **PRD** submitted





- Signal  $(B \to D^* \tau^+ \nu)$  & Normalization  $(B \to D^* \ell^+ \nu)$ 
  - extracted simultaneously
  - by fitting 2D  $(M_{\text{miss}}^2, E_{\text{ECL}})$

$$M_{\rm miss}^2 \equiv (p_{e^+e^-} - p_{B_{\rm tag}} - p_{D^*} - p_{\ell})^2$$

 $E_{\rm ECL} = {\rm extra\ energy\ (unmatched)\ in\ the}$  EM calorimeter

arXiv:2401.02840 PRD submitted





Recent physics results from Belle II incl.  $B^+ \rightarrow K^+ \nu \bar{\nu}$ 

Youngjoon Kwon (Yonsei U.)

arXiv:2401.02840



# some corrections & validations



FIG. 4. Efficiency of reconstructing an energy deposit in the ECL matched to the  $K_{\rm L}^0$  direction as a function of the  $K_{\rm L}^0$ energy for data and simulation selected with the ITA analysis.

Recent physics results from Belle II incl.  $B^+ \to K^+ \nu \bar{\nu}$ 

Youngjoon Kwon (Yonsei U.)

### arXiv:2311.14647 **PRD** accepted



FIG. 22. Distribution of  $\Delta E$  in data obtained for  $B^+ \rightarrow$  $(K^+,\pi^+)D^0$  decays reconstructed as  $B^+ \to K^+ \nu \bar{\nu}$  events with the daughters from the  $D^0$  decays removed.

The relative abundance  $\overline{D}{}^0K^+$  to  $\overline{D}{}^0\pi^+$  for data vs. MC is found to be consistent w/ expectation with  $1.03 \pm 0.09$ 

# Signal efficiency validation (ITA)



Recent physics results from Belle II incl.  $B^+ \rightarrow K^+ \nu \bar{\nu}$ 







# Charm baryon decays $\Xi_c^0$ -

**Table 1**. Theoretical predictions for the branching fractions and decay asymmetry parameters for  $\Xi_c^0 \to \Xi^0 h^0$  decays. Branching fractions are given in units of  $10^{-3}$ .

| Reference               | Model                     | $\mathcal{B}(\Xi_c^0 	o \Xi^0 \pi^0)$ | $\mathcal{B}(\Xi_c^0 \to \Xi^0 \eta)$ | $\mathcal{B}(\Xi_c^0 \to \Xi^0)$ |
|-------------------------|---------------------------|---------------------------------------|---------------------------------------|----------------------------------|
| Körner, Krämer [5]      | quark                     | 0.5                                   | 3.2                                   | 11.6                             |
| Xu, Kamal [7]           | pole                      | 7.7                                   | -                                     | -                                |
| Cheng, Tseng $[8]$      | pole                      | 3.8                                   | -                                     | -                                |
| Cheng, Tseng $[8]$      | $\operatorname{CA}$       | 17.1                                  | -                                     | _                                |
| Żenczykowski [9]        | pole                      | 6.9                                   | 1.0                                   | 9.0                              |
| Ivanov $et \ al. \ [6]$ | quark                     | 0.5                                   | 3.7                                   | 4.1                              |
| Sharma, Verma $[11]$    | $\operatorname{CA}$       | -                                     | -                                     | -                                |
| Geng $et al. [12]$      | ${ m SU}(3)_{ m F}$       | $4.3 {\pm} 0.9$                       | $1.7^{+1.0}_{-1.7}$                   | $8.6^{+11.0}_{-6.3}$             |
| Geng $et al. [13]$      | ${ m SU}(3)_{ m F}$       | $7.6{\pm}1.0$                         | $10.3 {\pm} 2.0$                      | $9.1 {\pm} 4.1$                  |
| Zhao $et al. [14]$      | ${ m SU}(3)_{ m F}$       | $4.7{\pm}0.9$                         | $8.3 \pm 2.3$                         | $7.2{\pm}1.9$                    |
| Zou et al. $[10]$       | pole                      | 18.2                                  | 26.7                                  | _                                |
| Huang $et \ al. \ [15]$ | ${ m SU}(3)_{ m F}$       | $2.56{\pm}0.93$                       | -                                     | -                                |
| Hsiao $et al. [16]$     | ${ m SU}(3)_{ m F}$       | $6.0{\pm}1.2$                         | $4.2^{+1.6}_{-1.3}$                   | -                                |
| Hsiao $et al. [16]$     | $SU(3)_{\rm F}$ -breaking | $3.6{\pm}1.2$                         | $7.3 \pm 3.2$                         | -                                |
| Zhong $et al. [17]$     | ${ m SU}(3)_{ m F}$       | $1.13\substack{+0.59 \\ -0.49}$       | $1.56{\pm}1.92$                       | $0.683^{+3.2}_{-3.2}$            |
| Zhong $et al. [17]$     | $SU(3)_F$ -breaking       | $7.74\substack{+2.52\\-2.32}$         | $2.43^{+2.79}_{-2.90}$                | $1.63^{+5.09}_{-5.1}$            |
| Xing $et al. [18]$      | ${ m SU}(3)_{ m F}$       | $1.30{\pm}0.51$                       | -                                     | -                                |

Recent physics results from Belle II incl.  $B^+ \rightarrow K^+ \nu \bar{\nu}$ 

Youngjoon Kwon (Yonsei U.)

in preparation for JHEP



 $\Rightarrow \Xi^0 h^0$  $(h^0 = \pi^0, \eta, \eta')$