

Highlights on recent top-quark production results from CMS

Jeremy Andrea, on behalf of the CMS collaboration

Top-quark production : a playground for theory and modelling

• Top-quark production (and decays) is extensively studied at the LHC.

- The large luminosity allows to perform precise studies of the $t\bar{t}$ and the "not-so-rare-anymore" top processes (single top, associated production with bosons).
 - It allows to probe the Standard Model, test theory modelling,
 - To search for deviations, as a sign of new-physics (EFT).

- Recent results of top-quark inclusive and differential cross sections are presented :
 - **TOP-23-005** : $t\bar{t}$ cross section at $\sqrt{s} = 5.02$ TeV,
 - **TOP-20-006** : multi-dim. $t\bar{t}$ cross section at $\sqrt{s} = 13$ TeV,
 - **TOP-23-008** : tW cross section at $\sqrt{s} = 13.6$ TeV,
 - **TOP-23-004** : $t\bar{t}Z + tWZ$ and tZq cross sections at $\sqrt{s} = 13$ TeV.

Inclusive and differential $t\bar{t}$ cross sections at $\sqrt{s} = 5.02$ TeV and $\sqrt{s} = 13$ TeV

TOP-23-005 TOP-20-006, arXiv:2402.08486, submitted to JHEP

CMS

$t\bar{t}$ pair production

LHC is a Top Factory. $\sigma_{t\bar{t}}(13TeV) = 831^{+30}_{-20}(scale) \pm 4(PDF + \alpha_s) pb$

*t***t cross section at 5.02 TeV** TOP-23-005

IPHC Institut Pluridisciplinaire Huber CURRN STRABOUR

- Inclusive and differential cross sections at 5.02 TeV.
 - L=302 *pb*⁻¹ of pp data (2017),
 - $\sigma_{t\bar{t}} vs \sqrt{s}$: important test of the SM, PDFs, modelling.
- Lepton+jet channel :
 - 1 lepton (e, μ), \geq 3 jets, \geq 1 b-jet, $\vec{p}_T^{miss} >$ 30 GeV,
 - Categorisation of events : 3j1b, 4j1b, 3j2b, 4j2b,
 - QCD multi-jets : estimated from a control region + extrapolation factor.
- Signal extracted from ML fit.
 - 3j1b : W+jets separated from $t\bar{t}$ using multivariate discriminant,
 - Other categories : median ΔR between all possible combinations of two jets ($\Delta R_{med}(j, j)$).

tt cross section at 5.02 TeV

- Measured cross section :
 - $\sigma_{t\bar{t}} = 61.4 \pm 1.6(stat.) \pm 2.7(syst.) \pm 1.2(lumi.)$ pb.
 - Systematics dominated by btagging, ME/PS matching, trigger.

- Combination with CMS dilepton measurement (TOP-16-023)
 - $\sigma_{t\bar{t}} = 61.2 \pm 1.6(stat.) \pm 2.5(syst.) \pm 1.2(lumi.)$ pb.

*tt***¯ cross section at 13 TeV**

TOP-20-006, arXiv:2402.08486

- Measurement with high statistic $(138 f b^{-1})$.
 - Multi-differential cross sections!
- In the dileptonic channel.
 - Lower background, lower sensitivity to hadronization/PS, less jet combinatorics.
 - Top quark reconstruction a bit more complicated, due to the presence of 2 neutrinos.
- Events selection and background.
 - 2 leptons (e or μ), \geq 2 jets, \geq 1 b-tag, m_{ll} > 20 Gev.
 - *ee* and $\mu\mu$ channels : Z-mass veto, $\vec{p}_T^{miss} > 40$ GeV.
 - Z-normalisation SF from Z peak region.
- Top reconstruction and unfolding at parton or particle levels.

- Models predict harder $p_{\rm T}$ spectra and more-central rapidity distributions.

- 2D differential distributions allow for deeper studies.
- Several distributions investigated $(p_T(t), p_T(t\bar{t}), m_{t\bar{t}}, y_T(t), y_T(t\bar{t}), \Delta\varphi(t\bar{t}), \Delta\eta(t\bar{t}) \dots)$.
- Harder p_T spectra clearly enhanced at large $m_{t\bar{t}}$.

tt cross section at 13 TeV

TOP-20-006, arXiv:2402.08486

- Best description from POW+PYT for the additional jet production.
- $m_{llb\bar{b}}$ and $m_{t\bar{t}}$ not well described below $\sim 2m_t$. Region sensitive to :
 - Toponium,
 - Top mass threshold effects,
 - Interferences with tW(b) single top.

Observation of Quantum entanglement in $t\bar{t}$ by the CMS collaboration (TOP-23-001)

Inclusive and differential single top *tW* cross section at $\sqrt{s} = 13.6$ TeV

TOP-23-008

tW cross section

- tW cross section measurements : test of predictions, modelling, and sensitivity to interferences with $t\bar{t}$.
- At NLO, double counting from $t\bar{t}$ in MC production.
 - Treated with different approaches (DR, DR2, DS, DS-dyn),
 - Comparing approaches gives information on interferences.
- Only $e\mu$ channel, similar events selection and background estimation than $t\bar{t}$ dilepton.
- Inclusive measurement .
 - from ML multi-classifier in 1*j*1*b*, 2*j*1*b* (tW-enriched)
 - + sub-leading jet p_T in 2j2b ($t\bar{t}$ enriched for constrain).

 $\sigma_{tW} = 84.1 \pm 2.1 \text{ (stat)}^{+9.8}_{-10.2} \text{ (syst)} \pm 3.3 \text{ (lumi) pb.}$

 Dominant systematics : JES, non-prompt lepton, b-tagging.

- Particle level differential cross sections (1j1b, no ML).
 - Overall good data/simulation agreements, given the (large) statistical uncertainty,
 - Comparisons of methods to treat $t\bar{t} tW$ overlap/interferences gives similar results : limited impact of interferences ?

$t\bar{t}Z + tWZ$ and tZq cross sections at $\sqrt{s} = 13$ TeV

TOP-23-004

$t\bar{t}Z + tWZ$ and tZq cross sections

- Simultaneous measurement of $t\overline{t}Z + tWZ$ and tZq.
 - $t\bar{t}Z + tWZ$: treated as 1 signal process (interferences),
 - Proper accounting for correlations in the fit,
 - Maximum sensitivity to $t\bar{t} Z$ EFT.
- Events selection and backgrounds.
 - 3 leptons (e, μ), ossf compatible with a Z mass,
 - \geq 2jets with $|\eta| < 5, \geq$ 1b-tag,
 - Data-driven estimation of non-prompt background.

• Inclusive measurements from a multi-classifier ML ($t\bar{t}Z + tWZ$, tZq and backgrounds).

$$\sigma(t\bar{t}Z + tWZ) = 1.14 \pm 0.05 \text{ (stat)} \pm 0.04 \text{ (syst) pb},$$

 $\sigma(tZq) = 0.81 \pm 0.07 \text{ (stat)} \pm 0.06 \text{ (syst) pb}.$

- Total uncertainties 6-11%, dominated by statistics.
- Measurement compatible with SM predictions.

TOP-23-004

- Differential cross sections, as a function of variables sensitive to EFT.
- Good agreement for the tZq process.
- Clear trend as a function of $p_T(l_W)$ for $t\bar{t}Z + tWZ$.

Conclusion

- Inclusive and differential cross sections measurements.
 - At different collision energies,
 - At high luminosity (and high statistic),
 - For rare processes and associated production with boson.
- It allows for comparisons with MC models and SM predictions. And to potentially identify deviations.
- Overall good agreements between SM and data observed. However some discrepancies can be seen :
 - Models predict harder p_T spectra in $t\bar{t}$ events,
 - Low $m_{t\bar{t}}$ region is not well described at low masses,
 - $t\bar{t}$ and tW interplay can be explored deeper,
 - Top-quark production with a Z boson shows softer lepton p_T in data.
- Several recent results from CMS on top quark production are presented, improving our understanding of top quark physic, but also pointing to where more investigations could be needed.

backup

The top quark pair production and properties

FIXME : move to backup ?

Observation of entanglement in *t*t̄ events

- Measurement of quantum entanglement in $t\bar{t}$ dilepton events.
 - Extracted from measurement of spin correlation at low $m_{t\bar{t}}$ values.
 - Similar events selection and reconstruction as for $t\bar{t}$ cross section,
 - Entanglement measured from the "D" parameter estimated from $\cos \varphi_{ll}$.

$$\frac{1}{\sigma} \frac{d\sigma}{d\cos\varphi} = \frac{1}{2} (1 - D\cos\varphi)$$

• Expected (observed) significance of 4.7 (5.1) standard deviations

TOP-23-005 ML input variable

Systematic TOP-23-005

Systematic TOP-23-004

Source	$\sigma(t\bar{t}Z + tWZ)$	$\sigma(tZq)$
Trigger	2%	2%
Trigger prefiring	<1%	2%
Lepton identification efficiencies	1%	2%
b tagging	1%	2%
Jet energy scale	1%	3%
Jet energy resolution	$<\!1\%$	1%
Missing transverse momentum	<1%	3%
Nonprompt background	2%	3%
Pileup	<1%	1%
Luminosity	2%	2%
Statistical	3.7%	10%
Background modeling	2%	4%
Factorization scale	1%	1%
Renormalization scale	1%	2%
Parton shower	<1%	2%
PDF and α_S	<1%	<1%
Underlying event and color reconnection	1%	2%
tWZ modeling	<1%	<1%
MC statistical	<1%	1%
Total	6%	13%