

Measurement of W and Z boson production in association with jets in ATLAS

camilla.vittori@cern.ch

Camilla Vittori

Outline

 \diamond V (W or Z) in association with (heavy-flavour) jets or hadrons production:

- Precise test of perturbative QCD (pQCD) test state-of-art predictions
- Sensitive to Parton Distribution Functions (PDFs)
- Tune predictions and improve Monte Carlo (MC) simulations
 - background to other physics processes
 - reduce modelling/theoretical uncertainty

<u>Today's focus on newest ATLAS results:</u>

- **p**^{miss} + jets
- ★ Z + \geq 1, 2 b-jets and Z+ \geq 1 c-jet
- ★ W + D in backup

Standard Model Production Cross Section Measurements

Status: October 2023

Measurement of p_T^{miss} + jets

Unfolded differential measurements of p_T^{miss} produced in association with jets

Two types of measurements:

- \Rightarrow **Z**($\rightarrow \nu\nu$) + jets "process-specific" after subtraction of all sub-dominant processes
- p_T^{miss} + jets "final state driven" only fakes are subtracted from data →highly re-interpretable in various Beyond-SM (BSM) searches (i.e. Dark Matter)

Differential cross sections measurements in two phase-spaces:

- Inclusive: pT^{miss}
- Vector Boson Fusion (VBF) enhanced: p_T^{miss} , $\Delta \phi_{ii}$ and m_{ii}

Camilla Vittori

Measurement of prmiss + jets

Contraction of the local distribution of the

Measurements performed in:

- Signal Region (SR): p_T^{miss} + jets
- 5 Auxiliary Regions (AR): -

1 lepton+jets, 2 leptons+jets, photon+jets

 Measure regions individually and as ratios $\mathbf{R}_{miss} = \sigma(\mathbf{SR}) / \sigma(\mathbf{AR})$

 $\bullet R_{miss}$ allow cancellation of systematics and modelling effect

Regions				
SR: p _T ^{miss} + jets	Aux: µ + jets			
Aux: e + jets	Aux: 2µ + jets			
Aux: 2e + jets	Aux: γ + jets			

Camilla Vittori

pp collisions at $\sqrt{s} = 13$ TeV $\mathcal{L} = 140 \text{ fb}^{-1}$

Phase-spaces	Observables

>= 1 jet	p_ ^{miss}
VBF, >= 2 jets	p_{T}^{miss} , m_{jj} and $\Delta \Phi_{jj}$

Measurement of p_T^{miss} + jets

- Background contributions:

 - ◆ QCD multijet: suppressed by $\Delta \phi(jet, p_T^{miss})$ + data-driven technique
 - specific control regions

		Final-state event selection					
Production process	$p_{\rm T}^{\rm miss}$ +jets	2e+jets	2μ +jets	e+jets	μ+jets	γ+jets	
$Z \rightarrow \nu\nu + jets$	55%	_	_	_	_	_	
$Z \rightarrow ee + jets$	_	94%	_	_	_	_	
$Z \rightarrow \mu \mu$ + jets	_	_	95%	_	2%	_	
$W \rightarrow ev + jets$	6%	_	_	68%	_	_	
$W \rightarrow \mu \nu + \text{jets}$	9%	_	_	_	67%	_	
$W \rightarrow \tau \nu + \text{jets}$	20%	_	_	5%	7%	_	
γ + jets	_	_	_	_	_	>99%	
Тор	7%	3%	2%	25%	21%	_	
Multi-boson	3%	3%	3%	2%	3%	<1%	

Non collision background: removed by jet identification + data-driven approach using jet timing

SM processes: shape is taken from the MC simulation and normalisation is derived from fit to data in

P_Tmiss + jets Results

Camilla Vittori

pp collisions at $\sqrt{s} = 13$ TeV

 $\mathcal{L} = 140 \text{ fb}^{-1}$

P_Tmiss + jets Interpretations

Interpretation of the unfolded data in DM-searches - 2 models tested!

- Measured R_{miss} are used to test axial-vector mediator Dirac DM model comparable sensitivity with dedicated DM-searches [Phys. Rev. D 103 (2021) 112006]
- Limits also on 2HDM+a model, where the Higgs doublets and a pseudo-scalar couple with DM

arXiv:2403.02793 Submitted to JHEP

Z + HF-jets measurement

Inclusive and differential $Z \rightarrow 1$ b-jet, $Z \rightarrow 2$ b-jets, $Z \rightarrow 1$ c-jet cross-sections

- Precise test of pQCD predictions (NNLO available)
- Unique access to b-, c-quark and gluon PDFs
- Explore possible sensitivity to Intrinsic Charm (IC) component
- Sensitive to different Flavour number Schemes (FS) in the predictions
- Inputs for MC modelling tuning
- ♦ Z+HF background in VHbb analyses and BSM searches

 $\star Z + \ge 1$ b-jet and $Z + \ge 2$ b-jets: update 36 fb⁻¹ results with larger statistics, new b-tagging algorithm and optimised strategy

te	pp collisions at $\sqrt{s} = 13$ TeV	arXiv:2403.150
13	$\mathcal{L} = 140 \text{ fb}^{-1}$	Submitted to EPJ

Z + HF-jets analysis strategy

Define 2 Signal Regions (SR):

1-tag: $Z + \ge 1$ *b*-jet and $Z + \ge 1$ *c*-jet measurements **2-tag:** $Z \rightarrow 2$ *b*-jets measurement

◆ data-driven tt background in $e^{\pm}\mu^{\mp}$ CR *backup → avoid large modelling uncertainties

Z+jets background with bin-wise "flavour fit" of flavour sensitive observable

→ correct shape and normalisation

 Correct detector level distributions to particle level in fiducial phase space (unfolding) <u>*backup</u>

◆ <u>Fwd/central ratio of Z p_T in Z+≥1 c-jet events:</u>

keep correlations and migrations into account

pp collisions at $\sqrt{s} = 13$ TeV arXiv:2403.15093 Submitted to EPJC $\mathcal{L} = 140 \text{ fb}^{-1}$

→ Select $Z(\rightarrow \mu\mu, ee)$ + 1 or 2 flavour-tagged jets, with 85% DL1r (30% efficiency on c-jets)

Z + HF-jets Flavour-fit

 \diamond Z+jet with flavour different from the one measured is the largest source of background

Correct Z+jets flavour components and constrain systematics with "flavour-fit" Maximum-likelihood fit to data based on flavour sensitive distribution fit performed in individual (optimised) bins of each measured observable

Example for 1-tag SR:

- Fit of flavour-tagging score (DL1r) in calibrated bins
- 3 free parameters corresponding to $Z+\geq 1$ *b*-jet, $Z+\geq 1$ *c*-jet and $Z+\geq light$ jets normalisation

pp collisions at $\sqrt{s} = 13$ TeV

 $\mathcal{L} = 140 \text{ fb}^{-1}$

2-tag SR

<i>Z</i> +≥1 <i>c</i> -jet	<i>Z</i> +≥2 <i>b</i> -jets
<i>Z</i> + <i>b</i> , <i>Z</i> +I	Z+1b, Z+c, Z+l

<u>*backup</u>

Factor 2 improved precision with respect to previous 36 fb⁻¹ Z+b results

Dominant uncertainty contributions from: flavour-tagging, jet energy scale and resolution and unfolding <u>*backup</u>

Inclusive cross-sections:

- ♦ 5FS better describes data
- Large underestimation from:
 - 4FS of *Z*+1 *b*-jet
 - 3FS of Z+1 c-jet

→ lack of log-resummation in **PDF** evolution

$$ln(Q^2/m_c^2)$$

pp collisions at $\sqrt{s} = 13$ TeV

 $\mathcal{L} = 140 \text{ fb}^{-1}$

Source of uncertainty	$\left Z(\rightarrow \ell \ell) + \ge 1 \text{ b-jet} \right $	$ Z(\to \ell \ell) + \ge 2 b \text{-jets}$	$\Big Z(\to \ell\ell) + \ge 1 d$
	[%]	[%]	
Flavour tagging	3.6	5.7	10.3
Jet	2.4	4.3	6.5
Lepton	0.3	0.3	0.4
$E_{\mathrm{T}}^{\mathrm{miss}}$	0.4	0.5	0.3
Z+jets background	0.6	1.5	1.6
Top background	0.1	0.3	< 0.1
Other backgrounds	< 0.1	0.2	0.1
Pile-up	0.6	0.6	0.2
Unfolding	3.3	5.8	5.0
Luminosity	0.8	0.9	0.7
Total [%]	5.6	9.4	13.2

- <u>5FS:</u> good description of data by both MGAMC+PY8 FXFX and SHERPA 2.2.11
- 4FS: MGAMC+PY8 underestimates data in the full spectra no log-term resummation in PDF evolution!
- Fixed-order: NLO discrepancies are improved with NNLO
- \star <u>**m**</u>_{bb}: none of the predictions in agreement with data in the full spectrum

pp collisions at $\sqrt{s} = 13$ TeV

 $\mathcal{L} = 140 \text{ fb}^{-1}$

arXiv:2403.15093 Submitted to EPJC

Large uncertainty on NNLO due to correction for different flavour jet classification \rightarrow importance of using IRC-safe jet flavour algorithm already in measurements

- \bullet Larger experimental uncertainties in Z+>1 c-jet measurement due mostly to flavour-tagging
- ◆ <u>5FS</u>: soft p_T spectra well described by MGAMC+PY8 FxFx and SHERPA 2.2.11, not true for p_T>100 GeV
- ◆ <u>4FS:</u> reasonable p_T modelling by MGAMC+PY8
- <u>3FS:</u> MGAMC+PY8 underestimates data by a factor ~3 no log-term resummation in PDF evolution!
- Fixed-order: NLO predicts softer pT spectra, small improvement with NNLO

DIS2024

pp collisions at $\sqrt{s} = 13$ TeV $\mathcal{L} = 140 \text{ fb}^{-1}$

arXiv:2403.15093 Submitted to EPJC

- \bullet Experimental and theoretical systematics reduced in Fwd/central ratio of Z p_T (~8%)
- Similar trend with respect to data by all IC models from NNPDF, CT14 and CT18
- The measurement has small sensitivity to IC
- BHPS2 (with $\langle x_c \rangle \sim 2\%$) improves the description of data
- In more realistic scenarios (BHPS1, NNPDF and CT18) the improvement is still marginal

MGAMC+Py8 with different PDF sets testing several *IC*-models (PDF reweighting)

IC is a "valence-like" contribution expected at high Bjorken-*x*

pp collisions at $\sqrt{s} = 13$ TeV

arXiv:2403.15093 Submitted to EPJC

 $\mathcal{L} = 140 \text{ fb}^{-1}$

 V+jets and V+HF jets represent an essential ingredient of Standard Model, with very complex phenomenology

The interplay between theoretical and experimental effort allows to reach high precision and high sensitivity

Improved knowledge of proton PDF is crucial to progress further in many precision analyses

THANKS FOR YOUR ATTENTION! ANY QUESTIONS?

Measurement of W+D

◆ W+D(*) with D→K $\pi\pi$ and D*→D $_0\pi$ →K $\pi\pi$

- Secondary vertex fit to reconstruct D-decays
- W and D with opposite sign (OS), while background charge symmetric (SS)

OS-SS event correlation to suppress background

- Measurement of integrated cross-sections
- Differential W+D(*) cross sections
 - with binned profile likelihood fit of m(D) in p_T(D) and η^{lep} bins simultaneously in SS and OS
- Cross section ratio R_c:

$$R_{c}^{\pm} = \frac{\sigma_{fid}^{OS-SS}(V)}{\sigma_{fid}^{OS-SS}(V)}$$

Camilla Vittori

pp collisions at $\sqrt{s} = 13$ TeV $\mathcal{L} = 140$ fb⁻¹

Phys. Rev. D 108 (2023) 032012

Motivations:

W + charmed mesons as probe of s-quark PDF
 constraints for future PDF fits

- Comparison with state-of-art NLO MCs
- + Probe $s-\bar{s}$ quark asymmetry with R_c

W+D Results

◆ <u>Rc:</u>

- ♦ %-level exp. precision
- NNPDF40 NNLO in tension with measured data
- ♦ ABMP16 and CT18 impose $s = \bar{s}$
- \blacklozenge NNPDF and MSHT allow s and \overline{s} to differ
- Measurements are more in agreement with ABMP16 and CT18

★ $s - \bar{s}$ asymmetry small in the Bjorken-x region probed by this measurement

pp collisions at $\sqrt{s} = 13$ TeV $\mathcal{L} = 140$ fb⁻¹

Integrated cross-sections:

- ◆ 5% exp. precision (syst. dominated)
 → comparable with PDF-syst
- Great agreement with all PDF sets!

W+D Results

 \Rightarrow p_T(D) distributions not sensitive to PDFs

 $\bullet \eta^{lep}$ with small systs provide good sensitivity to PDF variations

 \bullet broader η^{lep} in Data than predictions - **discrepancy reduced if considering PDF unc.**

Camilla Vittori

pp collisions at $\sqrt{s} = 13$ TeV $\mathcal{L} = 140 \text{ fb}^{-1}$

Phys. Rev. D 108 (2023) 032012

→ measurements provide useful constraints for global PDF fits

Measurement of W+D

Channel	$D^+ \eta(\ell) $				
<i>p</i> -value for PDF [%]	Exp. Only	QCD Scale	\oplus Had. and Matching	⊕ PDF	
ABMP16_5_nnlo	7.1	11.8	12.9	19.8	
ATLASpdf21_T3	9.0	9.7	11.5	84.7	
CT18ANNLO	0.7	1.0	1.1	76.0	
CT18NNLO	1.4	6.1	6.3	87.6	
MSHT20nnlo_as118	2.7	2.9	3.3	45.6	
PDF4LHC21_40	3.9	5.3	5.6	75.8	
NNPDF31_nnlo_as_0118_hessian	1.5	2.6	2.8	50.7	
NNPDF31_nnlo_as_0118_strange	9.1	14.7	15.2	59.9	
NNPDF40_nnlo_as_01180_hessian	9.9	10.2	10.2	43.7	

pp collisions at $\sqrt{s} = 13$ TeV $\mathcal{L} = 140$ fb⁻¹

P_Tmiss+jets · Selection

Attribute	$p_{\rm T}^{\rm miss}$ +jets	e+jets	2 <i>e</i> +jets	μ +jets	2μ +jets	
Lepton or photon		$ y \le 1.37$ or				y
rapidity	_	$1.52 \le _{1}^{2}$	$ y \le 2.47$		≤ 2.3	1.52
Leading lepton or		> 20	> 80	> 7	> 80	
photon $p_{\rm T}$ [GeV]	_	> 30	> 00		> 80	
Sub-leading			> 7		> 7	
lepton $p_{\rm T}$ [GeV]	_	_		_		
Dilepton mass,			$m_{\ell\ell} \in$		$m_{\ell\ell} \in$	
$m_{\ell\ell}$ [GeV]	_	_	(66, 116)	_	(66, 116)	
(Additional) muons	None with $p_{\rm T} > 7$ GeV, $ \eta < 2.5$					
(Additional) electrons	None with $p_{\rm T} > 7$ GeV, $ \eta < 1.37$ or $1.52 < \eta $			$\eta < 2$		
$m_{\rm T}$ [GeV]		$m_{\mathrm{T}} \in$				
	_	(30, 100)	_	_	_	
$p_{\rm T}^{\rm miss}$ [GeV]	> 200	> 60	-	—	_	
$p_{\rm T}^{\rm recoil}$ [GeV]	> 200	> 200	> 200	> 200	> 200	

pp collisions at $\sqrt{s} = 13$ TeV

 $\mathcal{L} = 140 \text{ fb}^{-1}$

arXiv:2403.02793 Submitted to JHEP

γ +jets
$ \le 1.37 \text{ or}$
$ y \le 2.4$
> 160
_
_
.47
_

COLUMN A NUMBER OF COLUMN

> 200

Attribute	≥ 1 jet	VBF
$\Delta \phi (\text{jet}, p_{\text{T}}^{\text{miss}})$	> 0.4 f	or four leading $p_{\rm T}$ jets
Hadronic τ -lepton	None	with $p_{\rm T} > 20$ GeV,
	$ \eta < 1.37 \text{ or } 1.52 < \eta < 1.37$	
Leading jet $p_{\rm T}$ [GeV]	> 120	> 80
Sub-leading jet $p_{\rm T}$ [GeV]	—	> 50
Leading jet y	< 2.4	< 4.4
Sub-leading jet y	—	< 4.4
Dijet invariant mass m_{jj} [GeV]	—	> 200
$ \Delta y_{jj} $	_	> 1
In-gap jets	_	None with $p_{\rm T} > 30 {\rm GeV}$

P_T^{miss}+jets · Uncertainties

pp collisions at $\sqrt{s} = 13$ TeV

 $\mathcal{L} = 140 \text{ fb}^{-1}$

P_T^{miss}+jets · Results

Camilla Vittori

pp collisions at $\sqrt{s} = 13$ TeV

 $\mathcal{L} = 140 \text{ fb}^{-1}$

P_Tmiss+jets · R_{miss}

.....

Camilla Vittori

pp collisions at $\sqrt{s} = 13$ TeV

 $\mathcal{L} = 140 \text{ fb}^{-1}$

P_T^{miss} +jets · Results Z($\rightarrow \nu \nu$)+jets

Camilla Vittori

pp collisions at $\sqrt{s} = 13$ TeV $\mathcal{L} = 140 \text{ fb}^{-1}$

arXiv:2403.02793 Submitted to JHEP

Z + HF · Samples

+ Data

• full Run-2, $L = 140 \text{ fb}^{-1}$

+ MC samples

- State of art MCs for signal and Z+jets bkg:
 - MGAMC@NLO+Py8 with FxFx merging up to 3 partons in NLO ME (nominal)
 - SHERPA 2.2.11 up to 2 partons in NLO ME (alternative)

	Process	Generator	Order of pQCD in ME (FNS)	Order σ_{prod} calculation
Signal & <i>Z</i> +jets bkg	$\begin{array}{c} Z \to \ell \ell \\ Z \to \ell \ell \end{array}$	MGAMC+Py8 FxFx Sherpa 2.2.11	0-3p NLO (5FNS) 0-2p NLO, 3-5p LO (5FNS)	NNLO NNLO
tī single-top	<i>tī</i> single top (<i>s/t/Wt</i> -channel)	Powheg+Py8 Powheg+Py8	NLO NLO	NNLO+NNLL NLO
diboson	$qg/q\bar{q} \rightarrow VV \rightarrow \ell\ell/\ell\nu/\nu\nu + q\bar{q}$	Sherpa 2.2.1	1p NLO, 2-3p LO	NLO
ZH	$\begin{array}{l} qq \rightarrow ZH \rightarrow \ell \ell / \nu \nu + b \bar{b} \\ gg \rightarrow ZH \rightarrow \ell \ell / \nu \nu + b \bar{b} \end{array}$	Powheg+Py8 Powheg+Py8	NLO NLO	NNLO(QCD),NLO(EW) NLO+NLL

Camilla Vittori

pp collisions at $\sqrt{s} = 13$ TeV

 $\mathcal{L} = 140 \text{ fb}^{-1}$

Z + HF · tt background

 \bullet Dileptonic $t\bar{t}$ events represent the second largest background

+ Data-driven determination in $e^{\pm}\mu^{\mp}$ CR in 71 GeV $\leq m_{\parallel} \leq 111$ GeV \diamond avoid large (up to 70% in Z p_T) modelling uncertainty on MC samples

$$\begin{aligned} & \text{ttbar} = \text{Data-MC} & \text{Transfer}\\ & \text{in } e\mu \text{ CR} & \text{correction} \end{aligned} \\ & ttbar_{Data}^{SR} = ttbar_{Data}^{CR} * TF^{CR-1} \end{aligned}$$

$$TF^{CR \to SR} = \frac{ttbar_{MC}^{SR(ee/\mu\mu)}}{ttbar_{MC}^{CR(e\mu)}}$$

◆ Detector-level systematics propagated through TF^{CR→SR}

\bullet CR \rightarrow SR extrapolation uncertainty

 • validation region (VR): $E_T^{miss} \ge 60$ GeV in 71 GeV< m_l<76 GeV or 106 GeV< m_l<111GeV
</p> ♦ difference between $t\bar{t}$ estimates from CR→VR and Data-MC in VR

Camilla Vittori

pp collisions at $\sqrt{s} = 13$ TeV

 $\mathcal{L} = 140 \text{ fb}^{-1}$

arXiv:2403.15093 Submitted to EPJC

- r Factor (TF) from CR to SR

Z + HF · Flavour Fit

2-tag SR:

- **DL1r score**

 $\mathcal{L} = 140 \text{ fb}^{-1}$

arXiv:2403.15093 Submitted to EPJC

• Fit of combination of leading and sub-leading flavour-tagged jet

• 4 free parameters corresponding to *Z*+≥2 *b*-jets, *Z*+1 *b*-jet, *Z*+≥1 *c*-jet and *Z*+≥light jets normalisation

Z + HF · Detector level

Z+jets background are scaled by the scale factors from flavour-fit

arXiv:2403.15093 Submitted to EPJC

 $\mathcal{L} = 140 \text{ fb}^{-1}$

$Z + HF \cdot Unfolding$

$Z+\geq 1$ b-jet, $Z+\geq 1$ c-jet and $Z+\geq 2$ b-jets cross see measured at particle level in fiducial phase s

- (Data-Bkg) corrected for selection efficiency, resolution effects and differences between detection level and fiducial phase spaces
- Differential cross sections corrected to part level with iterative Bayesian unfolding
- **fwd/central** $Z p_T$ ratio is then evaluated from the unfolded unrolled distribution.
- by dividing for Ndetector-level/Nparticle-level.
- (agreement within $1\sigma/2\sigma$ in 1-tag/2-tag SRs).

pp collisions at $\sqrt{s} = 13$ TeV

 $\mathcal{L} = 140 \text{ fb}^{-1}$

otiono	Object Selection	Acceptance cuts	
clions	Lepton	$ \begin{array}{ c c c c c } p_{\rm T} > 27 \; {\rm GeV}, \eta < 2.5 \\ 2 \; {\rm same \; flavour \; and \; opposite \; charge, \; 76 \; {\rm GeV} < m_{\ell\ell} < 10 \\ p_{\rm T} > 20 \; {\rm GeV}, y < 2.5, \Delta R(b\text{-jet}, \ell) > 0.4 \\ p_{\rm T} > 20 \; {\rm GeV}, y < 2.5, \Delta R(c\text{-jet}, \ell) > 0.4 \end{array} $	
puoo —	<i>b</i> -jet <i>c</i> -jet		
	Event Selection	Acceptance cuts	
ctor	$Z + \ge 1 \ b\text{-jet}$ $Z + \ge 2 \ b\text{-jets}$ $Z + \ge 1 \ c\text{-jet}$	$ Z + \ge 1 b$ -jet and a <i>b</i> -jet is the leading heavy-flavour jet $Z + \ge 2 b$ -jets and a <i>b</i> -jet is the leading heavy-flavour jets $Z + \ge 1 c$ -jet and a <i>c</i> -jet is the leading heavy-flavour jet	
liala	Rapidity regions	Acceptance cuts	
licie	Central rapidity Forward rapidity	$\begin{vmatrix} Z \text{ boson rapidity } y(Z) < 1.2 \\ Z \text{ boson rapidity } y(Z) \ge 1.2 \end{vmatrix}$	

◆ For $Z_{+\geq 1}$ c-jet events: central and fwd $Z p_T$ are unfolded simultaneously (unrolled distribution). The

Inclusive fiducial cross sections measured in 1-bin observables and corrected to particle level

Measurements are performed separately in the electron and muon channels and then combined

Z + HF · **Uncertainties**

- ◆ b-jet tagging, Jet, Lepton, E^{miss}, Pile-up and Luminosity
- Z+jets bkg: (i) post-fit MGAMC+PY8 FXFX vs SHERPA 2.2.11 difference and (ii) MGAMC+PY8 FXFX QCD scale
- \bullet tt bkg: extrapolation from eµ-CR to SR
- Other bkg: QCD scale for diboson and overall normalisation for ZH, single-top and $Z \rightarrow \tau \tau$
- Unfolding: (i) MGAMC+PY8 FXFX statistics, (ii) data-driven unfolding-bias and (iii) modelling from comparison with SHERPA
- Statistical uncertainty on data from 1000 pseudo-experiments (<1%)

Differential distributions: total systematic uncertainties <5% in $Z + \ge 1$ b-jet (except some bins in $Z p_T$), ~10-15% in $Z \rightarrow 2$ b-jets and $Z \rightarrow 1$ c-jet (except some bins at the edges)

pp collisions at $\sqrt{s} = 13$ TeV

 $\mathcal{L} = 140 \text{ fb}^{-1}$

arXiv:2403.15093 Submitted to EPJC

10³

Z + HF · **Predictions**

Measured cross-sections compared with several predictions, test sensitivity to:

- different FS in ME
- *IC*-component in proton PDFs
- higher order in QCD

ATLAS official ME+PS samples

Z+bb and Z+cc MGAMC+PY8 with 2 partons in NLO ME

MGAMC+Py8 with different PDF sets testing severa *IC*-models (PDF reweighting)

Fixed-order predictions with jet flavour dressing 2 corrections applied: (i) parton \rightarrow hadron level and (ii) different jet flavour classifications

Camilla Vittori

 $\mathcal{L} = 140 \text{ fb}^{-1}$

arXiv:2403.15093 Submitted to EPJC

	' Generator/settings	Flav. scheme	PDF	LHAPDF IE		
	Main MC samples					
5	MGAMC+Py8 FxFx	5FS	NNPDF3.1 (NNLO) LuxQED	325100		
	Sherpa 2.2.11	5FS	NNPDF3.0 (NNLO)	303200		
	Predictions to test various flavour schemes					
E	MGAMC+Py8	5FS	NNPDF2.3 (NLO)	229800		
	MGAMC+Py8 Zbb	4FS	NNPDF3.1 (NLO) рсн	321500		
	MGAMC+Py8 Zcc	3FS	NNPDF3.1 (NLO) рсн	321300		
	Intrinsic charm (IC) predictions					
al J)	MGAMC+Py8 FxFx	5FS	NNPDF4.0 (NNLO) рсн (no IC)	332100		
			NNPDF4.0 (NNLO)	331100		
			NNPDF4.0 (NNLO) EMC+LHCbZc	-		
			CT18 (NNLO) (no IC)	14000		
			CT18FC – CT18 BHPS3	14087		
			CT18FC – CT18 MCM-E	14093		
			CT14 (NNLO) (no IC)	13000		
			CT14 (NNLO)IC – BHPS1	13082		
			CT14 (NNLO)IC – BHPS2	13083		
g	Fixed-order predictions					
d	NLO	5FS	PDF4LHC21	93000		
ς	NNLO	5FS	PDF4LHC21	93000		
U U						

$Z + HF \cdot Results$

5FS: good description of data by both MGAMC+PY8 FXFX and SHERPA 2.2.11 MGAMC+PY8 with higher $\Delta R(Z, b-jet) \sim \pi$ production (back-to-back)

Fixed-order: Large uncertainty on NNLO due to correction for different flavour jet classification

 $\Rightarrow \Delta \phi_{bb}$: good description of data by all predictions 4FS MGAMC+PY8 slightly underestimates collinear and back-to-back *b*-jets

Camilla Vittori

pp collisions at $\sqrt{s} = 13$ TeV

 $\mathcal{L} = 140 \text{ fb}^{-1}$

arXiv:2403.15093 Submitted to EPJC

$Z + HF \cdot Results$

5FS: good description of data by both MGAMC+PY8 FXFX and SHERPA 2.2.11 MGAMC+PY8 with higher $\Delta R(Z, b-jet) \sim \pi$ production (back-to-back)

Fixed-order: Large uncertainty on NNLO due to correction for different flavour jet classification

 $\Rightarrow \Delta \phi_{bb}$: good description of data by all predictions 4FS MGAMC+PY8 slightly underestimates collinear and back-to-back *b*-jets

Camilla Vittori

pp collisions at $\sqrt{s} = 13$ TeV

 $\mathcal{L} = 140 \text{ fb}^{-1}$

arXiv:2403.15093 Submitted to EPJC

Z + HF · Results

- $p_T > 100$ GeV. Reasonable agreement with data for x_F .
- \rightarrow **4FS**: reasonable p_T and x_F modelling by MGAMC+PY8
- <u>3FS: MGAMC+Py8 underestimates data by a factor ~3 lack of logarithmic resummation in PDF evolution</u> • **Fixed-order:** NLO predicts softer p_T spectra, small improvement with NNLO. Reasonable description of x_F .

Camilla Vittori

 $\mathcal{L} = 140 \text{ fb}^{-1}$

arXiv:2403.15093 Submitted to EPJC

◆ <u>5FS</u>: soft p_T spectra well described by MGAMC+PY8 FxFx and SHERPA 2.2.11, which underestimate data for

