

Measurements of the Higgs boson mass and natural width with the ATLAS detector

L. Carminati (Università degli Studi e INFN Milano) on behalf of the ATLAS Collaboration

DIS2024 - Grenoble

L. Carminati

DIS2024

Motivations

The Higgs boson mass (m_H) is a fundamental parameter of the SM that <u>can only be</u> <u>measured experimentally</u>.

- Its value determines the Higgs boson production rates and decay BR: mandatory for a coherent test of the Higgs coupling structure.
- Verify the internal consistency of the SM, (interplay between the m_{top}, m_W and m_H)
- The stability of the EW vacuum depends on the value of the Higgs boson mass

□ Higgs boson width is predicted in the SM as a function of m_H (~ 4.1 MeV for m_H =125 GeV). Important measurement :

Verify the SM predictions

□ Solve the degeneracy between couplings and width: Higgs production crosssections as measured in different production and decay gives access to this ratio:

$$\sigma_{i \to H \to f} \sim \frac{g_i^2 g_f^2}{\Gamma_H}$$

The starting point

At the LHC m_H was measured in $H \rightarrow \gamma \gamma$ and $H \rightarrow ZZ^* \rightarrow 4\ell$ decay channels due to their excellent mass resolution (1-2%), which produces a clear peak above a continuum background in the $m_{\gamma\gamma}$ or m_{4l} distributions

□ In RUN1 (25 fb⁻¹ at $\sqrt{s=7/8}$ TeV) ATLAS+CMS measured m_H with a precision of 0.2%

□ ATLAS provided intermediate RUN2 results (36 fb⁻¹ at \sqrt{s} =13 TeV) □ m_H (4l) = 124.79 ± 0.36 (stat.) ± 0.05 (syst.) GeV (<u>limited by stat</u>) □ m_H ($\gamma\gamma$) = 124.93 ± 0.21 (stat.) ± 0.34 (syst.) GeV (<u>limited by syst</u>)

 \square This presentation: legacy RUN2 measurements on 140 fb⁻¹ at \sqrt{s} = 13 TeV and their combination

L. Carminati

DIS2024

What happened in the meantime

In-depth understanding of the detector performance using the full RUN2 dataset (5-6 years after the end of the data taking)

Higgs boson mass measurement in the 4l channel

Narrow peak above a background continuum (mostly non-resonant ZZ*) :

□ The analysis considers four channels: 4µ, 4e, 2µ2e, 2e2µ

- Constraint to m_z with kinematic fit (17% improvement in resolution)
- □ Neural Network based discriminant selecting signal and background (D_{NN})
- \Box Modelling of per-event resolution (σ_i)

□ The resolution ranges from 1.5 GeV (4µ and 2e2µ) to about 2.1 GeV (2e2µ and 4e) □ Signal PDF modelled as a function of, D_{NN} , σ_i and m_{4l}

Higgs boson mass measurement in the 4l channel

The value of m_H from a simultaneous ML fit on all categories (4 μ , 4e, 2 μ 2e, 2e2 μ)

RUN2 : m_H = 124.99 ± 0.18 (stat.) ± 0.04 (syst.) = 124.99 ± 0.19 GeV

Dominant syst unceratinties from muon	Systematic Uncertainty Contribution [MeV]		
and electron scale	Muon momentum scale	± 28	
and electron scale	Electron energy scale	± 19	
	Signal-process theory	± 14	

RUN1+RUN2 : m_H = 124.94 ± 0.17 (stat.) ± 0.03 (syst.) = 124.94 ± 0.18 GeV

- □ Require two good-quality and isolated photons with $p_T/m_{\gamma\gamma}$ > 0.35 (0.25)
- Separate events in mutually exclusive categories to minimise the total expected uncertainty on m_H
- Model the signal and smoothly falling background with analytical functions
- □ Systematic uncertainties included in the model as nuisance parameters
- $\hfill m_H$ from a maximum likelihood fit on the $m_{\gamma\gamma}$ distributions simultaneously in all categories

m_H from a simultaneous maximum likelihood fit on the 14 categories

 m_H = 125.17 ± 0.11 (stat.) ± 0.09 (syst.) = 125.17 ± 0.14 GeV

Reaching a precision of 0.11% : syst uncertainties below stat !
 Global compatibility of the m_H for the individual categories with a p-value of 8%

Systematic uncertainty on m_H dominated by photon energy scale (PES):

huge effort to refine the PES and PES uncertainties: PES uncertainty impact is reduced from 330 to 83 MeV

	New clustering: better energy collection (especially for converted photons)	E _T depende constrained b scale factors in	int systematics are by the measurement in E_T bins (<i>linearity fit</i>)
photon out-of-cluster	Source	Impact $[MeV]$	
energy leakage mis-	Photon energy scale	83	
modeling by simulation	$Z \to e^+ e^-$ calibration	59	
	$E_{\rm T}$ -dependent electron energy scale	44	
	$e^{\pm} \rightarrow \gamma$ extrapolation	30	
	Conversion modelling	24	
interference between the	Signal–background interference	26	
signal and the galage way	Resolution	15	Minor impact from
background included as a	Background model	14	signal and
systematic uncertainty (no	Selection of the diphoton production vertex	5	background modelling
central value correction)	Signal model	1	
	Total	90	

Phys. Rev. Lett. 131 (2023) 251802

Combined ATLAS Higgs boson mass measurement

 m_{H} = 125.11 ± 0.09 (stat.) ± 0.06 (syst.) = 125.11 ± 0.11 GeV

Current most precise measurement of m_H reaching a precision < 1 per mill (0.09%)
 Systematic uncertainties dominated by H→γγ channel uncertainties

SM predicts the Higgs boson width of $\Gamma_{\rm H}$ = 4.1 MeV : too small for direct on-shell measurement !

□ Indirect measurement from the ratio of on-shell/off-shell Higgs boson production in the H→ZZ decay channel

In fact, for gg → H → ZZ final state and write the production cross-section as a function of the invariant mass of four leptons M₄₁

$\frac{d\sigma_{pp \to H \to ZZ}}{dM_{4l}^2} \sim \frac{g_{Hgg}^2 g_{HZZ}^2}{(M_{4l}^2 - m_H^2)^2 + m_H^2 \Gamma_H^2} \sim \frac{\frac{g_{Hgg}^2 g_{HZZ}^2}{m_H^2 \Gamma_H^2}}{\frac{g_{Hgg}^2 g_{HZZ}^2}{(M_{4l}^2)^2}} \text{ for } |\mathsf{M}_{4l}| >> \mathsf{m}_{\mathsf{H}}$

 Assuming that the on-shell and off-shell Higgs production follow SM prediction (no new physics), Γ_H can be determined

Measuring the off- shell contribution not straightforward : interference with continuum background. Gluon-gluon case :

- □ In SM, negative ⇒ off-shell Higgs manifestation = deficit of events w.r.t. background only expectation
- \square Can also consider EW (VBF+VH) production and different modifiers $\mu_{\rm off-shell}$ (ggF) and $\mu_{\rm off-shell}$ (EW)

Need a very good MC modelling of signal and interfering background

The measurement is performed considering two final states

- \Box ZZ \rightarrow 4 ℓ : clean and fully reconstructible final state
- \Box ZZ \rightarrow 2 ℓ 2 ν : six times higher branching ratio

□ Targeting off shell contribution from both ggF and EW (VBF+VH) modes

- Events are separated in ggF-like, electroweak-like and mixed categories
- $\hfill\square$ Normalization of non-interfering background from qq \rightarrow ZZ fitted on data CR
- Signal vs bkg discriminated using NN (4l) or transverse mass (2l2v)

□ $\mu_{off-shell} = 1.1_{-0.6}^{-0.6}$ with a significance of on-shell production 3.3 (2.2) o □ After combining the off-shell measurement with the on-shell H→ZZ^{*}→4 ℓ

 $\Gamma_{\rm H}$ = 4.5^{+3.3}_{-2.5} MeV and 0.5 (0.1) < $\Gamma_{\rm H}$ < 10.5 (10.9) MeV at 95% CL

Conclusions

- □ ATLAS made huge efforts in improving the understanding of the detector's performance during RUN2 allowing sizeable improvements in m_H uncertainty
- □ The new ATLAS measurements of the Higgs boson mass by combining $H \rightarrow \gamma \gamma$ and $H \rightarrow ZZ^* \rightarrow 4\ell$ final states and using $\sqrt{s}=7,8$ and 13 TeV data, resulted in the current most precise m_H measurement with an uncertainty of 0.09%

m_H = 125.11 ± 0.09 (stat.) ± 0.06 (syst.) = 125.11 ± 0.11 GeV

- The determination of the Higgs boson width is very hard at a hadron colliders: exploiting the ratio of off-shell to on-shell Higgs boson production in the ZZ decay channel with reasonable assumptions, ATLAS measured the Higgs boson width Γ_H
 - · $\Gamma_{\rm H}$ = 4.5^{+3.3}_{-2.5} MeV and 0.5 (0.1) < $\Gamma_{\rm H}$ < 10.5 (10.9) MeV at 95% CL

<u>THANKS</u>

Backup

Motivations

Eur. Phys. J. C78, 675 (2018)

arXiv:1205.6497

L. Carminati

DIS2024

17

DIS2024

щ Щ Щ

Higgs boson mass measurement in the 4l channel

	Category	Best S/B for high p _{Tt} categories	$\sigma_{90}^{\gamma\gamma}[GeV]$	S_{90}	B_{90}	$f_{90} \ [\%]$	Z ₉₀
Best resolution for U categories	U, Centra U, Centra U, Centra	al-barrel, high $p_{\text{Tt}}^{\gamma\gamma}$ al-barrel, medium $p_{\text{Tt}}^{\gamma\gamma}$ al-barrel, low $p_{\text{Tt}}^{\gamma\gamma}$	$ 1.88 \\ 2.34 \\ 2.63 $	42 102 837	$65 \\ 559 \\ 13226$	$39.1 \\ 15.4 \\ 6.0$	$4.7 \\ 4.2 \\ 7.2$
	U, Outer U, Outer U, Outer U, Endca C, Centra C, Centra	-barrel, high $p_{Tt}^{\gamma\gamma}$ -barrel, medium $p_{Tt}^{\gamma\gamma}$ -barrel, low $p_{Tt}^{\gamma\gamma}$ al-barrel, high $p_{Tt}^{\gamma\gamma}$ al-barrel, medium $p_{Tt}^{\gamma\gamma}$	$2.16 \\ 2.63 \\ 3.00 \\ 3.33 \\ 2.10 \\ 2.62$	$31 \\ 108 \\ 869 \\ 759 \\ 26 \\ 62$	$83 \\981 \\22919 \\29383 \\44 \\389$	$27.4 \\ 9.9 \\ 3.7 \\ 2.5 \\ 37.3 \\ 13.8$	3.3 3.4 5.7 4.4 3.6 3.1
Lower systematics for C categories	C, Centra C, Outer C, Outer C, Outer C, Outer C, Endca Inclusive	al-barrel, low $p_{\text{Tt}}^{\gamma\gamma}$ -barrel, high $p_{\text{Tt}}^{\gamma\gamma}$ -barrel, medium $p_{\text{Tt}}^{\gamma\gamma}$ -barrel, low $p_{\text{Tt}}^{\gamma\gamma}$	$ \begin{array}{r} 2.52 \\ 3.00 \\ 2.56 \\ 3.20 \\ 3.71 \\ 4.04 \\ \overline{3.32} \end{array} $	$508 \\ 34 \\ 114 \\ 914 \\ 1249 \\ 5653$	$9726 \\ 103 \\ 1353 \\ 30121 \\ 52160 \\ 128774$		$5.1 \\ 5.1 \\ 3.2 \\ 3.1 \\ 5.2 \\ 5.5 \\ 15.6$

This categorization reduces the total m_H uncertainty:

By about 17% compared with an inclusive measurement
 by 6% compared to the event classification defined in partial RUN 2 measurement

- The diphoton events are divided in 14 mutually exclusive categories defined to optimize the total uncertainty on m_H
 - The optimal categorisation depends on S/B ratio, m_{γγ} resolution and photon energy scale uncertainties
- □ The category are defined based on:
 - The number of converted photons
 - The pseudorapidity of the two photons
 - The p_{Tt} of the diphoton system (0-70 GeV, 70-130 GeV, > 130 GeV)

- This categorization reduces the total m_H uncertainty:
- By about 17% compared with an inclusive measurement
- by 6% compared to the event classification defined in partial RUN 2 measurement

Improved:

- material modelling (x3)
- ayer intercalibration and calorimeter readout
- □ non-linearity (x2)
- \Box e $\rightarrow\gamma$ extrapolation (x3)

Et-dependent systematics increase for e/y away from <E_T
Z→ee > ~ 40 GeV
They are constrained through a fit to E_T-differential measurements of energy scale from Z→ee

Phys. Lett. B 847 (2023) 138315

Higgs boson mass measurement in the $\gamma\gamma$ channel

L. Carminati

DIS2024

Phys. Lett. B 847 (2023) 138315

Higgs boson mass measurement in the $\gamma\gamma$ channel

Combination produces +50 MeV shift of the central value and a <10 MeV reduction of the statistical uncertainty

L. Carminati

DIS2024

Combined Higgs boson mass measurement

L. Carminati

DIS2024

Systematic Uncertainty Fixed	$\mu_{\text{off-shell}}$ value at which $-2\ln\lambda(\mu_{\text{off-shell}}) = 4$
Parton shower uncertainty for $gg \rightarrow ZZ$ (normalisation)	2.26
Parton shower uncertainty for $gg \rightarrow ZZ$ (shape)	2.29
NLO EW uncertainty for $qq \rightarrow ZZ$	2.27
NLO QCD uncertainty for $gg \rightarrow ZZ$	2.29
Parton shower uncertainty for $qq \rightarrow ZZ$ (shape)	2.29
Jet energy scale and resolution uncertainty	2.26
None	2.30

Process	Process Uncertainty		Value (%)		
ggF Signal Region					
$qq \rightarrow ZZ$	QCD Scale	$2\ell 2\nu$	4-40		
$qq \rightarrow ZZ + 2j$	QCD Scale	4ℓ	21-28		
$qq \rightarrow ZZ + 2j$	QCD Scale	$2\ell 2\nu$	22-37		
$qq \rightarrow ZZ + 2j$	Parton Shower	$2\ell 2\nu$	1–67		
$gg \to H^* \to ZZ$	Parton Shower	4ℓ	27		
$gg \to H^* \to ZZ$	Parton Shower	$2\ell 2\nu$	8–45		
$gg \rightarrow ZZ$	Parton Shower	4ℓ	38		
$gg \rightarrow ZZ$	Parton Shower	$2\ell 2\nu$	6–43		
WZ + 0j	QCD Scale	$2\ell 2\nu$	1–54		
	1-jet Signal Re	gion			
$gg \to H^* \to ZZ$	Parton Shower	4ℓ	27		
$gg \to H^* \to ZZ$	QCD Scale	$2\ell 2\nu$	13–18		
$gg \rightarrow ZZ$	Parton Shower	4ℓ	38		
$gg \rightarrow ZZ$	$gg \rightarrow ZZ$ QCD Scale		18-20		
$qq \rightarrow ZZ (\mathrm{EW})$	QCD Scale	$2\ell 2\nu$	7-18		
2-jet Signal Region					
$qq \rightarrow ZZ + 2j$	QCD Scale	4ℓ	18–26		
$qq \rightarrow ZZ + 2j$	QCD Scale	$2\ell 2\nu$	8-32		
$gg \to H^* \to ZZ$	Parton Shower	4ℓ	27		
$gg \rightarrow ZZ$	Parton Shower	4 <i>l</i>	38		
$gg \rightarrow ZZ$	QCD Scale	$2\ell 2\nu$	18-20		
WZ + 2j	QCD Scale	$2\ell 2\nu$	20-22		
$qq \rightarrow ZZ$ Control Regions					
$qq \rightarrow ZZ + 2j$	QCD Scale	4ℓ	26		
Three-lepton Control Regions					
WZ + 2j	QCD Scale	$2\ell 2\nu$	28		

The dominant uncertainties in the leading processes in the signal and background regions

Process	ggF SR	Mixed SR	EW SR	-
$gg \rightarrow (H^* \rightarrow)ZZ$	341 ± 117	42.5 ± 14.9	11.8 ± 4.3	_
$gg \to H^* \to ZZ$	32.6 ± 9.07	3.68 ± 1.03	1.58 ± 0.47	
$gg \rightarrow ZZ$	345 ± 119	43.0 ± 15.2	11.9 ± 4.4	4 channel
$qq \rightarrow (H^* \rightarrow) ZZ + 2j$	23.2 ± 1.0	2.03 ± 0.16	9.89 ± 0.96	
$qq \rightarrow ZZ$	1878 ± 151	135 ± 23	22.0 ± 8.3	-
Other backgrounds	50.6 ± 2.5	1.79 ± 0.16	1.65 ± 0.16	
Total expected (SM)	2293 ± 209	181 ± 29	45.3 ± 10.0	-
Observed	2327	178	50	_

Process	ggF SR	Mixed SR	EW SR
$gg \rightarrow (H^* \rightarrow)ZZ$	210 ± 53	19.7 ± 4.9	4.29 ± 1.10
$gg \to H^* \to ZZ$	111 ± 26	10.9 ± 2.5	3.26 ± 0.82
$gg \rightarrow ZZ$	251 ± 66	23.4 ± 6.2	5.31 ± 1.46
$qq \rightarrow (H^* \rightarrow) ZZ + 2j$	14.0 ± 3.0	1.63 ± 0.17	4.46 ± 0.50
$qq \rightarrow ZZ$	1422 ± 112	80.4 ± 11.9	7.74 ± 2.99
WZ	678 ± 54	51.9 ± 6.9	7.89 ± 2.50
Z+jets	62.3 ± 24.3	7.51 ± 6.94	0.62 ± 0.54
Non-resonant- $\ell\ell$	106 ± 39	9.17 ± 2.73	1.55 ± 0.42
Other backgrounds	22.6 ± 5.2	1.62 ± 0.25	1.40 ± 0.10
Total expected (SM)	2515 ± 165	172 ± 17	28.0 ± 4.1
Observed	2496	181	27

2l2v channel