Higgs boson coupling properties to fermions and search for rare and LFV Higgs boson decays with ATLAS

Louis-Guillaume Gagnon on behalf of the ATLAS collaboration

> DIS2024 2024/04/09

Introduction

Higgs couplings: important window into SM

- Connection to EWK symmetry breaking
- Connection to origin of mass
- Shed some light into "ad-hoc" fermion sector
- Also a potential handle on BSM physics!
 - New particles change SM branching ratios
 - Some theories posit non-SM couplings
 - Small Higgs width sensitive to small couplings
- Complete picture is very challenging: many orders of magnitudes need probing!
 - Br($H \rightarrow bb$) is $10^8 \times Br(H \rightarrow ee)$

Today, present a selection of recent results:

- Higgs coupling to fermions $(bb, \tau\tau, \mu\mu, ee)$
- Coupling to $Z + \gamma$
- Lepton flavor violation (LFV) searches

I: Probing deeper with well-established couplings

$V(\rightarrow qq)H(\rightarrow bb)$: [2312.07605]

- ▶ $H \rightarrow bb$ is the largest Higgs branching ratio
- Experimentally well-established, with measurements in many production modes
- ► Not a rare decay ⇒ can use it to probe more challenging phase spaces such as boosted H → bb with an associated hadronically-decaying vector boson

- All-hadronic final state
 - $Br(V \rightarrow qq) > Br(V \rightarrow II')$ ©
 - Large irreducible multijet contribution (gully data-driven estimation!)
- $\blacktriangleright \frac{\text{Neural network algorithm}}{\text{tag large-radius jets as } H} \rightarrow bb$
- Results based on fit to Higgs candidate mass
- ▶ Signal strength $\mu = 1.4^{+1.0}_{-0.9}$, agrees with SM
- Significance: 1.7σ observed (1.2σ expected)
 - Compared to 2.1 σ obs. for $V(\rightarrow II')$ channel
- More details in upcoming talk

$V(\to II')H(\to \tau\tau)$: [2312.02394]

- au-lepton is the heaviest lepton: $Br(H \rightarrow au au)$ is also large
- Experimentally well-established:
 - Observed in ATLAS in 2015
 - ▶ $pp \rightarrow H \rightarrow \tau \tau$ cross-section measured to $\approx 14\%$ precision in 2022
- ▶ 2023: strong evidence for $H \rightarrow \tau_{lep} \tau_{had}$ and $H \rightarrow \tau_{had} \tau_{had}$ in association with $V \rightarrow II'$ $(I = e/\mu/\nu)$
- ▶ Neural network (NN) analysis using a set of classifiers trained on event and particle kinematics

$V(\to II')H(\to \tau \tau)$: [2312.02394]

- NN analysis: 4.2σ observed (3.6σ exp.)
- Signal strength compatible with SM

- mass fit (cross-check): 3.5σ obs. (2.5σ exp.)
- Signal strength compatible with SM

II: Recent developments for challenging couplings

$V(\rightarrow II')H(\rightarrow cc)$: Eur. Phys. J. C 82 (2022) 717

- Br($H \rightarrow cc$) is $\approx 3\%$
- However; Signal selection is very challenging
- ▶ c-tagging efficiency for this analysis (using DL1) for c/b/I jets is $\approx 27\%/8\%/1\%$
- ▶ Best strategy is to trigger on associated $V \rightarrow I/I'$ ($I = e/\mu/\nu$) production
- Simultaneous fit to m_{cc} invariant mass distribution in many signal regions to place limit on µ_{VHcc}
- ▶ Observed limit: $\mu < 26 \times \text{ SM}$
- ▶ Also determines $Br(H \rightarrow cc) < Br(H \rightarrow bb)$ at 95% CL

$H \rightarrow Z\gamma$ ATLAS/CMS combination: Phys. Rev. Lett. 132 (2024) 021803

- $Br(H \rightarrow Z\gamma) < 1\%$: now firmly into rare decay territory
- ▶ One of Higgs decays with no tree-level diagrams: particularly sensitive to many BSM scenarios

- Combination of two results to obtain strong evidence for this difficult signal
 - ATLAS: Phys. Lett. B 809 (2020) 135754
 - CMS: JHEP 05 (2023) 233
- ▶ Both analyses have same overall strategy: Fit peak in $m_{\parallel\gamma}$ distribution
- Combined using product of ATLAS & CMS likelihoods
 - QCD scale & branching ratio uncertainties are correlated
 - Other theory uncertainties have incompatible models: treated as uncorrelated
 - Experimental uncertainties are uncorrelated as well

$H \rightarrow Z\gamma$ ATLAS/CMS combination: Phys. Rev. Lett. 132 (2024) 021803

- Combination of ATLAS & CMS results
 - ATLAS: 2.2 σ (6 categories)
 - CMS: 2.6 σ (8 categories)
- Strong evidence with 3.4σ significance!
- Measured branching ratio: $(3.4 \pm 1.1) \times 10^{-3}$
- Compatible with SM prediction of $(1.5\pm0.1) imes10^{-3}$ within 1.9σ

$H \to \mu^+ \mu^-$: Phys. Lett. B 812 (2021) 135980

- Dimuon Higgs decay has sub-permill branching ratio!
- Very clean final state, but large Drell-Yan background overwhelm the small signal
- Simultaneous fit m_{µµ} in all SR: Excess of 2σ above background-only hypothesis

 Using event topology, kinematics, and BDT discriminant: define 20 Signal Regions

III: Vanishing and BSM couplings

$H \to ee$: Phys. Lett. B 801 (2020) 135148

- ► In SM, BR($H \rightarrow ee$) = $G_f m_h m_e^2 / (4\sqrt{2}\pi\Gamma_H) \approx 5 \times 10^{-9}$: comically small!
- ▶ No chance to observe at LHC, but BSM may be enhance it
- Familiar strategy: Simultaneous fit to m_{ee} distribution in many signal regions
- Observed limit: BR($H \rightarrow ee$) < 3.6 × 10⁻⁴, i.e. \approx 72000 × SM

13/19

$H \to e\mu$: Phys. Lett. B 801 (2020) 135148

- Lepton flavor violation (LFV) known to be realized in nature through neutrino oscillations
- Not observed as of yet for charged leptons
- LFV not allowed in SM \implies BSM physics
- ▶ $H \rightarrow e\mu$ search is a natural progression of $H \rightarrow ee$: Same strategy but with $m_{e\mu}$ spectrum
- Observed limit: $Br(H \rightarrow e\mu) < 6.2 \times 10^{-5}$

14 / 19

$H \rightarrow l\tau$: JHEP 07 (2023) 166

 \blacktriangleright Leverage $\tau\text{-identification}$ capabilities of ATLAS to identify LFV Higgs decays with a τ

 $\begin{array}{c} H & Y_{\ell\tau} \\ \hline \tau^{-} \\ W^{-} \\ \hline q' \\ \hline q \\ \hline q \end{array}$

- Leptonic τ channel
- Non-VBF subchannel: Background estimated via MC templates normalized to data
- VBF subchannel: Background estimated by exploiting symmetry between SM prompt lepton backgrounds

- Hadronic τ channel
- Background estimated via MC templates normalized to data

$H \rightarrow I \tau$: JHEP 07 (2023) 166

▶ Two different sets of classifiers used to separate signal from background:

- Leptonic τ VBF channel: Deep neural network
- Leptonic τ non-VBF & Hadronic τ channels: A set of BDTs

$H \rightarrow I\tau$: JHEP 07 (2023) 166

- ▶ 2-Pol fit setup allow setting limits on $Br(H \rightarrow e\tau)$ and $Br(H \rightarrow \mu\tau)$ simultaneously
- Both observed limits are at permill level
- Observed: $Br(H \rightarrow e\tau) < 0.2\%$

• Observed: $Br(H \rightarrow \mu \tau) < 0.18\%$

$H \to I\tau$: JHEP 07 (2023) 166

- ▶ 2-Pol fit setup allow setting limits on $Br(H \rightarrow e\tau)$ and $Br(H \rightarrow \mu\tau)$ simultaneously
- ► Can also extract 2D contour for best-fit values of these branching ratios
- ▶ SM expectation of (0, 0) slightly outside of 95% CL contour: 2.1σ "excess"
- ► A fluke, or a sign of an exciting future? The answer is left as an exercise

Conclusion

- Presented a selection of results on Higgs coupling properties
- Some couplings are well-established and can be used to probe more challenging final states
 - $V(\rightarrow qq)H(\rightarrow bb)$: 1.7 σ excess over background
 - $V(\rightarrow ll')H(\rightarrow \tau\tau)$: 4.2 σ observation
- Some couplings are inherently more difficult and have either just been observed or are actively being searched for
 - ► $V(\rightarrow II')H(\rightarrow cc)$: $\mu_{VHcc} < 26 \times$ SM
 - $H \rightarrow Z\gamma$ ATLAS/CMS combination: 3.4 σ observation
 - $H \rightarrow \mu^+ \mu^-$: 2σ excess over background
- Some couplings are vanishing or non-SM, and relevant in a BSM context
 - $\underline{H \rightarrow ee}$: $\mu < 3.6 \times 10^{-4}$
 - $\blacktriangleright \ \overline{\textbf{H} \rightarrow \textbf{e}\mu}: \ \mu < 6.2 \times 10^{-5}$
 - $\blacktriangleright \quad \underline{H \rightarrow e\tau}: \ \mu < 0.2\%$
 - $H \rightarrow \mu \tau$: $\mu < 0.18\%$
- This is only a small selection of all the recent ATLAS Higgs results!
- Be on the look out for other interesting talks at DIS2024!

Merci!

Rendering of a $H \rightarrow \mu \tau$ candidate event

BACKUP SLIDES

What about $H \rightarrow$ Invisible? Phys. Lett. B 842 (2023) 137963

$V(\rightarrow qq)H(\rightarrow bb)$: [2312.07605] \rightarrow Multijet background estimation

- ► Large irreducible QCD multijet background: fully data-driven estimation
- Compute transfer factor between SR & CR, where CR is exactly like CR but with inverted $H \rightarrow bb$ tagging

$$N_{multijet}^{SR}(p_T, m) = TF(p_T, \rho) \times N_{multijet}^{CR}(p_T, m)$$

•
$$TF(p_T, \rho) = \sum_{k,l} \alpha_{kl} \rho^k p_T^l$$

$$\rho = \log(m^{2/p_T^2})$$

• Cross-checked with BDT-based method which reweightes anti-V & anti-H-tagged data

Neural network analysis using a collection of classifiers trained on event and particle kinematics

- ► Total of 6 neural networks trained:
 - ▶ One for each of $WH \rightarrow \tau_{had}\tau_{had}$, $ZH \rightarrow \tau_{had}\tau_{had}$, $ZH \rightarrow \tau_{lep}\tau_{had}$
 - One for each of $WH \rightarrow \tau_{lep} \tau_{had} \implies \tau \rightarrow ee, \tau \rightarrow \mu\mu, \tau \rightarrow e\mu$

Selection	$WH, H \rightarrow \tau_{lep} \tau_{had}$	$WH, H \rightarrow \tau_{had}\tau_{had}$	$ZH, H \rightarrow \tau_{lep}\tau_{had}$	$ZH, H \rightarrow \tau_{had} \tau_{had}$
Preselection	exactly 1 $\tau_{\text{had-vis}}$ exactly 2 ℓ <i>b</i> -jet veto	exactly 2 $\tau_{had-vis}$ exactly 1 ℓ <i>b</i> -jet veto	$\begin{array}{l} \mbox{exactly 1 } \tau_{had\text{-vis}} \\ \mbox{exactly 3 } \ell \\ \mbox{same-flavour, OS } \ell \mbox{ pair} \\ \mbox{m}_{\ell\ell} \in [81, 101] \mbox{ GeV} \end{array}$	$\begin{array}{c} \mbox{exactly 2 } \tau_{\rm had-vis} \\ \mbox{exactly 2 } \ell \\ \mbox{same-flavour, OS } \ell \mbox{ pair} \\ \mbox{m}_{\ell\ell} \in [71, 111] \mbox{ GeV} \end{array}$
Signal Region	$ \begin{array}{c} 1 \ \tau_{\rm had-vis} \ {\rm and} \ 1 \ \tau_{\rm tep} \ {\rm OS} \\ {\rm exactly} \ 2 \ \ell \ {\rm SS} \\ \end{array} \\ \sum_{\ell} \ p_{\rm T}(\ell) + p_{\rm T}(\tau_{\rm had-vis}) > 90 \ {\rm GeV} \\ m_{ee} \notin [80, 100] \ {\rm GeV} \end{array} $	$ \begin{array}{ c c } & \operatorname{exactly} 2 \ \tau_{\mathrm{had-vis}} \ \mathrm{OS} \\ 0.8 < \Delta R (\tau_{\mathrm{had-vis}}, \tau_{\mathrm{had-vis}}) < 2.8 \\ & \sum_{\tau_{\mathrm{had-vis}}} p_T(\tau_{\mathrm{had-vis}}) > 100 \ \mathrm{GeV} \\ & \mathbf{m}_T(\ell, E_T^{\mathrm{miss}}) > 20 \ \mathrm{GeV} \end{array} $	exactly 1 $\tau_{had-vis}$ and 1 τ_{lep} OS $\sum_{\tau_{had-vis}, \tau_{lep}} p_{T}(\tau) > 60 \text{ GeV}$	exactly 2 $\tau_{\text{had-vis}}$ OS $\sum_{\tau_{\text{had-vis}}} p_{\text{T}}(\tau) > 75 \text{ GeV}$
Higgs boson mass window cut (only applied in the NN-based analysis)	$m_{2T} \in [60, 130] \text{ GeV}$	$m_{2T} \in [80, 130] \text{ GeV}$	$m_{\rm MMC} \in [100, 170] \; {\rm GeV}$	m _{MMC} ∈ [100, 180] GeV

$V(\rightarrow II')H(\rightarrow \tau \tau)$: [2312.02394] \rightarrow Neural Network details

All categories	$ZH, H \rightarrow \tau_{had}\tau_{had}$	$ZH, H \rightarrow \tau_{lep}\tau_{had}$	WH, $H \rightarrow \tau_{had}\tau_{had}$
N-prongs(τ_1)	N -prongs (τ_2)	$p_T(\ell_2)$	N-prongs(τ_2)
$p_T(\tau_1)$	$p_{T}(\tau_{2})$	$\eta(\ell_2)$	$p_T(\tau_2)$
$\eta(\tau_1)$	$\eta(\tau_2)$	$\phi(\ell_2)$	$\eta(\tau_2)$
$\phi(\tau_1)$	$\phi(\tau_2)$	$p_T(H)$	$\phi(\tau_2)$
$\Delta R(\tau_1, \ell_1)$	$p_T(\ell_2)$	$\eta(\ell_{\tau})$	$\sqrt{\eta(\ell_1)^2 + \phi(\ell_1)^2}$
$p_{T}(l_{1})$	$\eta(\ell_2)$	$\phi(\ell_{\tau})$	
$\eta(\ell_1)$	$\phi(\ell_2)$	$\Delta R(\ell, \ell)$	
$\phi(\ell_1)$	$m_{\ell\ell}$	$m_{\ell\ell}$	
$p_{\rm T}(E_{\rm T}^{\rm miss})$	$\Delta R(\ell, \ell)$		
$\phi(E_{T}^{miss})$			
	$WH,\;W\to e\nu_e,\;H\to\tau_e\tau_{\rm had}$	WH, $W \to e(\mu)v_{e(\mu)}, H \to \tau_{\mu(e)}\tau_{had}$	WH, $W \rightarrow \mu \nu_{\mu}, \ H \rightarrow \tau_{\mu} \tau_{had}$
	$p_T(\ell_\tau)$	$p_T(\ell_\tau)$	$p_T(\ell_\tau)$
	$\eta(\ell_{\tau})$	$\eta(\ell_{\tau})$	$\eta(\ell_{\tau})$
	$\phi(\ell_{\tau})$	$\phi(\ell_{\tau})$	$\phi(\ell_{\tau})$
	$\Delta \eta(\ell, \ell_{\tau})$	$\Delta \eta(\ell, \ell_{\tau})$	$\Delta \eta(\ell, \ell_{\tau})$
	jet width(τ_1)	jet width(τ_1)	jet width(τ_1)
	$p_T(H)$	$m(\tau_1, \ell_\tau)$	$\Delta R(\ell, \ell_{\tau})$
	$m(\tau_1, \ell_{\tau})$	$\Delta R(\ell, \ell_{\tau})$	$m(\tau_1, l_\tau)$
	$\Delta \eta(\tau_1, \ell_{\tau})$	$\Delta \eta(\tau_1, \ell_{\tau})$	$\Delta \eta(\tau_1, \ell_{\tau})$
	$\Delta \phi(l_1, \ell_{\tau})$	$\sum p_{T}(all visible)$	$\Delta R(\tau_1, \ell_{\tau})$
	$\Delta_{\phi}(\tau_1, E_T^{miss})$	$\Delta \phi(\tau_1, E_T^{miss})$	$\sum p_{T}(all visible)$
	10(0.0)	1	A 1/0 0 \

- ► Trained w/ Keras + Tensorflow backend
- Two initial transformation layers to enforce ϕ -invariance
- ▶ Three fully-connected layers w/ 128 nodes, ReLU activation
- Output: single node, sigmoid activation

 $V(\rightarrow II')H(\rightarrow cc)$: Eur. Phys. J. C 82 (2022) 717 \rightarrow charm tagging

- Charm tagging rates for different jet flavors:
 - c-jets: \approx 20–27% efficiency
 - b-jets: pprox 10% mistag rate
 - \blacktriangleright light jets: pprox 1% mistag rate

- Charm tagging strategy for 2-jet events
 - = 2 c-tag signal
 - Also use = 1 c-tag to increase acceptance

credit: M. Stamenkovic

$H \rightarrow Z\gamma$ ATLAS/CMS combination: Phys. Rev. Lett. 132 (2024) 021803 \rightarrow Standalone

CMS: JHEP 05 (2023) 233

► ATLAS: Phys. Lett. B 809 (2020) 135754

Category	μ	Significance
VBF-enriched	$0.5^{+1.9}_{-1.7} \ (1.0^{+2.0}_{-1.6})$	0.3 (0.6)
High relative $p_{\rm T}$	$1.6^{+1.7}_{-1.6} \ (1.0^{+1.7}_{-1.6})$	1.0 (0.6)
High $p_{\mathrm{T}t} \ ee$	$4.7^{+3.0}_{-2.7}(1.0^{+2.7}_{-2.6})$	1.7 (0.4)
Low $p_{\mathrm{T}t} \ ee$	$3.9^{+2.8}_{-2.7} (1.0^{+2.7}_{-2.6})$	1.5 (0.4)
High $p_{\mathrm{T}t} \ \mu\mu$	$2.9^{+3.0}_{-2.8}(1.0^{+2.8}_{-2.7})$	1.0 (0.4)
Low $p_{\mathrm{T}t} \ \mu\mu$	$0.8^{+2.6}_{-2.6}(1.0^{+2.6}_{-2.5})$	0.3 (0.4)
Combined	$2.0^{+1.0}_{-0.9}(1.0^{+0.9}_{-0.9})$	2.2 (1.2)

 $H \rightarrow \mu^+ \mu^-$: Phys. Lett. B 812 (2021) 135980 \rightarrow Example BDT

Example BDT output for VH/3/ categories

► Example mass spectrum for VH/3I-H SR

9/13

160

 $H \rightarrow e\mu$: Phys. Lett. B 801 (2020) 135148 $\rightarrow Y_{e\mu}-Y_{\mu e}$ constraint

$H \rightarrow l\tau$: JHEP 07 (2023) 166 \rightarrow 1-Pol results

- ▶ 1-Pol fit setup allow setting limits on $Br(H \rightarrow e\tau)$ and $Br(H \rightarrow \mu\tau)$ separately
- Assume ${\sf Br}(H o e au)=0$ when fitting ${\sf Br}(H o \mu au)$ and vice-versa
- Observed: $Br(H \rightarrow e\tau) < 0.23\%$

• Observed: Br $(H \rightarrow \mu \tau) < 0.17\%$

