Measurements of the CP structure of Higgs-boson couplings with the ATLAS experiment

Simen Hellesund On Behalf of the ATLAS Collaboration

University of Bergen

DIS2024 Grenoble – 09.04.24

Simen Hellesund (UiB)

Measurement of Higgs CP in ATLAS

09.04.24

1

Searches for CP violation in Bosonic Higgs Interactions

Simen Hellesund (UiB)

Measurement of Higgs CP in ATLAS

Bosonic Higgs Vertex - HVV

 $H \rightarrow ZZ^* \rightarrow 4l$

Simen Hellesund (UiB)

VBF H $\rightarrow \gamma \gamma$

• SMEFT squared matrix element:

$$= |\mathcal{M}_{SM}|^{2} + 2\sum_{i} \frac{c_{i}}{\Lambda^{2}} Re(\mathcal{M}_{SM}^{*}\mathcal{M}_{BSM,i}) + \sum_{i} \sum_{j} \frac{c_{i}c_{j}}{\Lambda^{4}} Re(\mathcal{M}_{BSM,j}^{*}\mathcal{M}_{BSM,j})$$

Measurement of Higgs CP in ATLAS

$H \rightarrow ZZ^* \rightarrow 4l$

- Search for CP violation in the HVV vertex in both VBF Higgs production and in Higgs decays to four leptons.
- Optimal Observable (OO) used as discriminant, calculated from matrix elements.
- In the SM, OO distribution is symmetric around zero. Asymmetric for CP-odd signals.
- Set limits on SMEFT couplings in Warsaw, Higgs, and HISZ bases.

Simen Hellesund (UiB)

Measurement of Higgs CP in ATLAS

arXiv:2304.09612 (submitted to JHEP)

 $OO = \frac{2Re(\mathcal{M}_{SM}^* \mathcal{M}_{BSM})}{|\mathcal{M}_{SM}|^2}$

$H \rightarrow ZZ^* \rightarrow 4l$

- ZZ* background normalisation fitted in a mass sideband control region.
- VBF-depleted ggH signal region, and four VBF signal regions defined by the output of a neural net classifier.
- Decay-level fit in VBF-depleted signal region.
- Production level fit in VBF signal regions.
- Shape only, signal normalisation is floating in the fit.

Simen Hellesund (UiB)

Simen Hellesund (UiB)

arXiv:2304.09612 (submitted to JHEP)

- In agreement with the SM.
- Limits are dominated by the interference matrix element term.
 - Implies low expected sensitivity to dimension eight operators.

Measurement of Higgs CP in ATLAS

VBF H $\rightarrow \gamma\gamma$

- Search for CP violation in Higgs VBF production, with the Higgs decaying to a photon pair. ullet
- Search performed in the Warsaw ($c_{H\widetilde{W}}$) and HISZ (d) bases. •
- ulletfrom continuum $\gamma\gamma$ background events.
- Three signal regions are defined based on cuts in the classifier outputs: TT, TL, and LT •

Simen Hellesund (UiB)

Measurement of Higgs CP in ATLAS

Phys. Rev. Lett. 131 (2023) 061802

Two boosted decision tree (BDT) classifiers are used: one to separate VBF signal from ggH contamination and one to separate VBF events

09.04.24

7

$\mathsf{VBF} \mathsf{H} \to \gamma \gamma$

- Perform an unbinned fit to $m_{\gamma\gamma}$ in each signal region, and in each bin of the optimal observable distribution.
- Signal and background shapes are modelled by analytic functions.
- Normalisation of the signal floats in the fit, only considering the OO shape.

Phys. Rev. Lett. 131 (2023) 061802

Measurement of Higgs CP in ATLAS

VBF H $\rightarrow \gamma\gamma$

- Confidence intervals at 95%: \tilde{d} : [-0.034,0.071], $c_{H\widetilde{W}}$: [-0.55,1.07]
- Consistent with the SM.
- Again, the CP-odd interference term is dominant, as expected for a shape analysis.
- The 68% $c_{H\widetilde{W}}$ confidence limit is about twice as restrictive as in the previously shown 4I analysis.
- - Full Run 2 VBF H $\rightarrow \tau \bar{\tau}$ analysis is under way.

Phys. Rev. Lett. 131 (2023) 061802

• Combine d result with VBF H $\rightarrow \tau \bar{\tau}$ analysis using a partial (36.1 fb⁻¹) Run 2 dataset for a confidence interval at 95% of d : [-0.034,0.057]

	68% (obs.)	95% (
\tilde{d} (inter. only)	[-0.011, 0.036]	[-0.032,
\tilde{d} (inter.+quad.)	[-0.010, 0.040]	[-0.034,
\tilde{d} from $H \to \tau \tau$	[-0.090, 0.035]	-
Combined \tilde{d}	[-0.012, 0.030]	[-0.034,
$c_{H\tilde{W}}$ (inter. only)	[-0.16, 0.64]	[-0.53,
$c_{H\tilde{W}}$ (inter.+quad.)	[-0.15, 0.67]	[-0.55,

Searches for CP violation in Fermionic Higgs Interactions

Simen Hellesund (UiB)

Measurement of Higgs CP in ATLAS

Fermionic Higgs Vertices - Yukawa

Simen Hellesund (UiB)

Measurement of Higgs CP in ATLAS

11

- Analysis targeting Ht \overline{t} and Ht production, with H \rightarrow bb
- Optimised for $Ht\bar{t}$, but Ht processes are also considered signal.
- Two channels, defined by the top pair decay modes:
 - Dileptonic: four b-tagged jets, two charged leptons.
 - I + jets: six jets (four b-tagged), one charged lepton.
- Four signal regions, defined by the output of two BDTs.
- CP-sensitive observables b_2 and b_4 , (or BDT output directly)
- p_1 and p_2 are the momentum three-vectors of the two top quarks.

Simen Hellesund (UiB)

Phys. Lett. B 849 (2024) 138469

Measurement of Higgs CP in ATLAS

$$b_4 = \frac{(\overrightarrow{p}_1 \cdot \widehat{z})(\overrightarrow{p}_2 \cdot \widehat{z})}{|\overrightarrow{p}_1||\overrightarrow{p}_2|}$$

- Simultaneous profile likelihood fit in all four signal regions.
- κ'_{t} and α are free parameters in the fit.
- Best fit parameters found to be:

•
$$\kappa_t' = 0.84^{+0.30}_{-0.46}$$

•
$$\alpha = 11^{\circ+52^{\circ}}_{-73^{\circ}}$$

Simen Hellesund (UiB)

Phys. Lett. B 849 (2024) 138469

Measurement of Higgs CP in ATLAS

Simen Hellesund (UiB)

Phys. Lett. B 849 (2024) 138469

$$= 0.84^{+0.30}_{-0.46} \qquad \alpha = 11^{\circ+52^{\circ}}_{-73^{\circ}}$$

Results are consistent with the SM.

• First probing of the CP properties of the Higgs top Yukawa coupling in this channel.

The pure CP-odd hypothesis is disfavoured at 1.2 σ .

• The ratio of Ht to Htt cross-sections varies from 0.06 in the SM scenario to more than 1.2 in the pure CPodd scenario.

 A dedicated Ht-optimised analysis is underway, focussing on the boosted Higgs region.

$H \rightarrow \tau \bar{\tau}$

- A search for CP violation in Higgs di-tau decays.
- The CP-mixing angle α is encoded in the correlations between the transverse spin components of the tau leptons.
- The signed acoplanarity angle ϕ^*_{CP} between the tau decay planes is sensitive to these spin correlations.
- The analysis targets hadronic and semi-hadronic di-tau decay channels.

Eur. Phys. J. C 83 (2023) 563

Measurement of Higgs CP in ATLAS

$\rightarrow \tau \tau$

- Two VBF (determined by the output of a BDT) and two ggH (boosted) signal regions.
- Further separated into "high", "medium", "low", signal regions, based on tau decay modes, and \bullet their sensitivity to tau spin correlations.
- $Z \rightarrow \tau \bar{\tau}$ background normalisation determined in a dedicated control region.

Simen Hellesund (UiB)

$H \rightarrow \tau \tau$

- Simultaneous likelihood fit as a function of the CP mixing angle α (ϕ_{τ} here).
- Signal strength floating in the fit.
- Best fit value: $\alpha = 9^{\circ} \pm 16^{\circ}$
- Reject the pure CP-odd hypothesis at 3.4 σ level.
- Results are consistent with the SM.

Simen Hellesund (UiB)

Eur. Phys. J. C 83 (2023) 563

کاn(L) $\sqrt{s} = 13 \text{ TeV}, 139 \text{ fb}^{-1}$ -40 20 ϕ |degrees Best fit -1σ 1.8 ---2 σ ¥ SM 1.6 1.4 1.2 8.0 0.6 0.4 ATLAS $0.2 \frac{1}{\sqrt{s}} = 13 \text{ TeV}, 139 \text{ fb}^{-1}$ $0 \frac{1}{-80} - 60 - 40 - 20 \quad 0 \quad 20 \quad 40 \quad 60 \quad 80$ ϕ_{τ} [degrees]

Measurement of Higgs CP in ATLAS

09.04.24

17

Summary and Outlook

- Four ATLAS-searches for CP violation in the Higgs sector, both in Higgs production and decay, utilising the full Run 2 dataset.
- No evidence for CP violation observed.
- All four analyses use multivariate methods to improve sensitivity.
- pipeline.
- Searches utilising Run 3 data are also under way.

Simen Hellesund (UiB)

• Complimentary analyses, such as VBF H $\rightarrow \tau \bar{\tau}$ and Ht with H \rightarrow bb are in the

Measurement of Higgs CP in ATLAS

Simen Hellesund (UiB)

Measurement of Higgs CP in ATLAS

Backup

Introduction

- Sakharov conditions: CP violation must exist to explain the matterantimatter asymmetry in the universe.
 - CP violation exists in the SM, but not enough to explain the observed asymmetry.
- In the SM, the Higgs boson is a CP-even scalar ($J^P = 0^+$).
 - Pure CP-odd pseudoscalar ($J^P = 0^-$) state has been ruled out.
 - Mixed states still possible.
- Observation of CP violation in the Higgs sector would be unequivocal evidence of BSM physics.

Simen Hellesund (UiB)

Measurement of Higgs CP in ATLAS

Introduction

- The ATLAS detector recorded 139 fb⁻¹ of protonproton collision data during the 2015-2018 LHC data taking campaign (Run 2).
- This talk will present recent ATLAS searches for CP violation in Higgs production and decay, utilising the full Run 2 dataset.
- Probing both bosonic and fermionic Higgs couplings.

Measurement of Higgs CP in ATLAS

Theoretical Framework - SMEFT

• Extend the SM Lagrangian by CP violating operators of mass dimension 6:

 $\mathscr{L}_{EFT} = \mathscr{L}_{S}$

The Warsaw Basis			
Operator	Field Content	Wilson Coefficient	
$\mathcal{O}_{\Phi \widetilde{W}}$	$\Phi^{\dagger} \Phi \widetilde{W}^{i}_{\mu u} W^{i\mu u}$	$c_{H\widetilde{W}}$	
$\mathcal{O}_{\Phi \widetilde{B}}$	$\Phi^{\dagger}\Phi\widetilde{B}_{\mu u}B^{\mu u}$	$c_{H\widetilde{B}}$	
$\mathcal{O}_{\Phi \widetilde{W}B}$	$\Phi^{\dagger}\sigma^{i}\Phi\widetilde{W}^{i}_{\mu u}B^{\mu u}$	$c_{H\widetilde{W}B}$	

• Set
$$c_{H\widetilde{W}} = c_{H\widetilde{B}} = \frac{\Lambda^2}{v^2} \widetilde{d}$$
, $c_{H\widetilde{W}B}$

• CP-odd contribution is now parameterised through d alone.

Simen Hellesund (UiB)

Measurement of Higgs CP in ATLAS

$$_{M} + \sum_{i} \frac{c_{i}}{\Lambda^{2}} \mathcal{O}_{i}^{(6)}$$

<u>The Higgs Basis</u>					
Operator Field Content Wilson Coefficient					
$\mathcal{O}_{hZ\widetilde{Z}}$	$hZ_{\mu u}\widetilde{Z}^{\mu u}$	c_{ZZ}			
$\mathcal{O}_{hA\widetilde{A}}$	$hA_{\mu u}\widetilde{A}^{\mu u}$	$c_{\gamma\gamma}$			
$\mathcal{O}_{hZ\widetilde{A}}$	$h Z_{\mu u} \widetilde{A}^{\mu u}$	$c_{Z\gamma}$			

The HISZ Basis

• In VBF, we cannot separate the contribution from different boson flavours.

= 0

Theoretical Framework - SMEFT

• Cross section is proportional to the squared matrix element:

$$\left|\mathscr{M}\right|^{2} = \left|\mathscr{M}_{SM}\right|^{2} + 2\sum_{i} \frac{c_{i}}{\Lambda^{2}} Re(\mathscr{M}_{SM}^{*}\mathscr{M}_{BSI})$$

- The first and third terms are both CP-even.
- The second term, stemming from interference between the SM and BSM matrix elements, is CP-odd.

Simen Hellesund (UiB)

 $SM,i) + \sum_{i} \sum_{j} \frac{C_i C_j}{\Lambda^4} Re(\mathscr{M}^*_{BSM,j} \mathscr{M}_{BSM,i})$

Measurement of Higgs CP in ATLAS

The Kappa Framework

- Example: top Yukawa coupling: $\mathscr{L}_{t\bar{t}}$
- Add pseudoscalar term: $\mathscr{L}_{t\bar{t}H} = -$
- Expressed in terms of mixing angle α : $\mathscr{L}_{t\bar{t}H} = -\kappa'_t y_t \phi \psi_t (\cos \alpha + i\gamma_5 \sin \alpha) \psi_t$
- CP-odd contribution may be significant at tree level.

$$\kappa_{t} = y_{t}\phi\bar{\psi}_{t}\psi_{t}$$

$$\kappa_{t} = \kappa_{t}'\cos\phi_{t}$$

$$\kappa_{t} = \kappa_{t}'\sin\phi_{t}$$

$$\kappa_{t} = \kappa_{t}'\sin\phi_{t}$$

$$\kappa_{t} = \kappa_{t}'\sin\phi_{t}$$

• Pure CP-even (α =0), pure CP-odd (α = $\pi/2$). Intermediate values are possible.

 CP-odd component of the HVV coupling is naturally suppressed by the scale of the new physics (Λ). This does not happen for Yukawa couplings, where

$H \rightarrow ZZ^* \rightarrow 4l$

Optimal observable distribution in the four VBF SRs, as well as in the inclusive SR.

Simen Hellesund (UiB)

arXiv:2304.09612 (submitted to JHEP)

Measurement of Higgs CP in ATLAS

Simen Hellesund (UiB)

arXiv:2304.09612 (submitted to JHEP)

Measurement of Higgs CP in ATLAS

$\mathsf{VBF} \mathsf{H} \to \gamma \gamma$

Simen Hellesund (UiB)

Phys. Rev. Lett. 131 (2023) 061802

Measurement of Higgs CP in ATLAS

Channel (TR)	Final SRs and CRs	Classification BDT selection	Fitted observable
\mathbf{D}^{i1} ($\mathbf{TD} > 4i > 4h$)	$ \begin{array}{c c} CR^{\geq 4j, \geq 4b} \\ CR^{\geq 4j, \geq 4b} \end{array} $	$- BDT^{\geq 4j, \geq 4b} \in [-1, -0.086)$	$egin{array}{c c} \Delta\eta_{\ell\ell}\ b_4 \end{array}$
Dilepton (TR ^{$2+j$, $2+v$})	$ \begin{array}{c c} \mathbf{SR}_{1}^{\geq 4j, \geq 4b} \\ \mathbf{SR}_{2}^{\geq 4j, \geq 4b} \end{array} $	$BDT^{\geq 4j, \geq 4b} \in [-0.086, 0.186)$ $BDT^{\geq 4j, \geq 4b} \in [0.186, 1]$	b_4 b_4
ℓ +jets (TR ^{$\geq 6j, \geq 4b$})	$\begin{vmatrix} & CR_1^{\geq 6j, \geq 4b} \\ & CR_2^{\geq 6j, \geq 4b} \\ & CR_2^{\geq 6j, \geq 4b} \\ & SR^{\geq 6j, \geq 4b} \end{vmatrix}$	$\begin{array}{l} \text{BDT}^{\geq 6j, \geq 4b} \in [-1, -0.128) \\ \text{BDT}^{\geq 6j, \geq 4b} \in [-0.128, 0.249) \\ \text{BDT}^{\geq 6j, \geq 4b} \in [0.249, 1] \end{array}$	$\begin{vmatrix} b_2 \\ b_2 \\ b_2 \\ b_2 \end{vmatrix}$
ℓ +jets (TR _{boosted})	SR _{boosted}	$BDT^{boosted} \in [-0.05, 1]$	BDT ^{boosted}

Simen Hellesund (UiB)

Measurement of Higgs CP in ATLAS

• Yields in the I + jets channel.

	$ \operatorname{CR}_{\text{lo}}^{5j,\geq 4b}$	$ \operatorname{CR}_{\operatorname{hi}}^{5j,\geq 4b}$	$ \operatorname{CR}_{1}^{\geq 6j, \geq 4b}$	$ \operatorname{CR}_2^{\geq 6j, \geq 4b}$	$ $ SR ^{$\geq 6j, \geq 4b$}	SR _{boosted}
$t\bar{t}H(1,0^{\circ})$ $tH(1,0^{\circ})$	60 ± 9 3.5 ± 0.5	63 ± 10 3.8 ± 0.6	$\begin{vmatrix} 78 \pm 11 \\ 3.3 \pm 0.6 \end{vmatrix}$	$\begin{vmatrix} 139 \pm 18 \\ 2.3 \pm 0.6 \end{vmatrix}$	$\begin{vmatrix} 173 \pm 26 \\ 1.3 \pm 0.4 \end{vmatrix}$	$\begin{vmatrix} 46 \pm 6 \\ 1.9 \pm 0.4 \end{vmatrix}$
tīH (1,90°) tH(1,90°)	28 ± 6 19.0 ± 2.8	28 ± 6 19.4 ± 3.1	$\begin{vmatrix} 45 \pm 11 \\ 17.4 \pm 3.1 \end{vmatrix}$	$\begin{vmatrix} 61 \pm 12 \\ 13.1 \pm 3.5 \end{vmatrix}$	68 ± 16 10 ± 4	$\begin{vmatrix} 45 \pm 6 \\ 29 \pm 6 \end{vmatrix}$
<i>ttH</i> (0.84, 11°) <i>tH</i> (0.84, 11°)	$\begin{vmatrix} 40 \pm 30 \\ 3 \pm 4 \end{vmatrix}$	41 ± 31 3.9 ± 1.9	$ \begin{array}{c c} 50 \pm 40 \\ 3.1 \pm 1.9 \end{array} $	$\begin{array}{ } 90 \pm 70 \\ 1.9 \pm 0.8 \end{array}$	$ \begin{array}{ } 110 \pm 80 \\ 1.3 \pm 1.7 \end{array} $	$\begin{vmatrix} 30 \pm 22 \\ 3 \pm 5 \end{vmatrix}$
$t\bar{t}+ \ge 1b$ $t\bar{t}+ \ge 1c$ $t\bar{t}+ \text{ light}$ Other	$ \begin{array}{r} 1530 \pm 80 \\ 650 \pm 50 \\ 280 \pm 40 \\ 173 \pm 30 \end{array} $	$ \begin{array}{ c c c c c } 1090 \pm 60 \\ 96 \pm 11 \\ 28 \pm 8 \\ 99 \pm 20 \end{array} $	$\begin{vmatrix} 4300 \pm 120 \\ 950 \pm 80 \\ 230 \pm 60 \\ 320 \pm 50 \end{vmatrix}$	$\begin{vmatrix} 2220 \pm 120 \\ 450 \pm 40 \\ 117 \pm 26 \\ 159 \pm 21 \end{vmatrix}$	$ \begin{array}{c c} 1110 \pm 110 \\ 153 \pm 15 \\ 32 \pm 11 \\ 83 \pm 11 \end{array} $	$\begin{vmatrix} 335 \pm 30 \\ 196 \pm 22 \\ 76 \pm 15 \\ 60 \pm 11 \end{vmatrix}$
Total	2690 ± 50	$ 1350 \pm 40$	5870 ± 80	$ 3040 \pm 70$	$ 1500 \pm 50$	701 ± 31
Data	2696	1363	5837	3090	1470	699

Simen Hellesund (UiB)

Measurement of Higgs CP in ATLAS

• Yields in the dilepton channel.

	$ CR_{hi}^{3j,3b}$	$ \operatorname{CR}_{\mathrm{lo}}^{\geq 4j, 3b}$	$ CR_{hi}^{\geq 4j, 3b}$	$ \operatorname{CR}_{\operatorname{no-reco}}^{\geq 4j, \geq 4b}$	$ $ CR ^{$\geq 4j$,$\geq 4b$}	$ $ SR ^{$\geq 4j, \geq 4b$}	$ $ SR ₂ ^{$\geq 4j, \geq 4b$}
$t\bar{t}H(1,0^{\circ})$ $tH(1,0^{\circ})$	$\begin{vmatrix} 26 \pm 4 \\ 1.12 \pm 0.13 \end{vmatrix}$	$\begin{vmatrix} 79 \pm 8 \\ 0.90 \pm 0.13 \end{vmatrix}$	$\begin{vmatrix} 120 \pm 12 \\ 1.74 \pm 0.20 \end{vmatrix}$	16.9 ± 2.1 0.19 ± 0.08	$\begin{vmatrix} 6.9 \pm 1.1 \\ 0.087 \pm 0.035 \end{vmatrix}$	$\begin{vmatrix} 12.5 \pm 1.5 \\ 0.100 \pm 0.033 \end{vmatrix}$	$\begin{vmatrix} 24.8 \pm 2.9 \\ 0.09 \pm 0.06 \end{vmatrix}$
tīH (1,90°) tH(1,90°)	$ 10.6 \pm 1.6 \\ 5.4 \pm 0.6 $	$\begin{vmatrix} 35.6 \pm 3.5 \\ 7.0 \pm 1.0 \end{vmatrix}$	$\begin{vmatrix} 54 \pm 5 \\ 10.7 \pm 1.2 \end{vmatrix}$	$\begin{array}{ } 7.2 \pm 0.9 \\ 1.8 \pm 0.8 \end{array}$	$\begin{vmatrix} 4.3 \pm 0.6 \\ 0.48 \pm 0.19 \end{vmatrix}$	$\begin{vmatrix} 6.1 \pm 0.7 \\ 0.48 \pm 0.16 \end{vmatrix}$	$\begin{vmatrix} 10.9 \pm 1.3 \\ 0.5 \pm 0.4 \end{vmatrix}$
<i>ttH</i> (0.84, 11°) <i>tH</i> (0.84, 11°)	$\begin{vmatrix} 18 \pm 14 \\ 0.9 \pm 0.5 \end{vmatrix}$	$\begin{vmatrix} 50 \pm 40 \\ 1.0 \pm 1.9 \end{vmatrix}$	80 ± 60 1.5 ± 1.3	11 ± 9 0.17 ± 0.16	$\begin{vmatrix} 4.7 \pm 3.4 \\ 0.068 \pm 0.016 \end{vmatrix}$	8 ± 6 0.08 ± 0.14	$\begin{vmatrix} 17 \pm 12 \\ 0.07 \pm 0.09 \end{vmatrix}$
$t\bar{t} + \ge 1b$ $t\bar{t} + \ge 1c$ $t\bar{t} + \text{light}$ Other	$ \begin{array}{r rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{vmatrix} 2520 \pm 110 \\ 2510 \pm 150 \\ 960 \pm 130 \\ 390 \pm 19 \end{vmatrix}$	$\begin{vmatrix} 4040 \pm 130 \\ 1160 \pm 90 \\ 230 \pm 40 \\ 340 \pm 40 \end{vmatrix}$	288 ± 15 23 ± 4 1.7 ± 0.4 33 ± 8	$\begin{array}{c c} 371 \pm 16 \\ 31.1 \pm 2.5 \\ 2.3 \pm 0.8 \\ 18.6 \pm 2.5 \end{array}$	$ \begin{array}{r} 160 \pm 8 \\ 13.4 \pm 1.6 \\ 1.4 \pm 0.8 \\ 10.9 \pm 1.3 \end{array} $	$\begin{vmatrix} 122 \pm 11 \\ 8.2 \pm 1.0 \\ 0.57 \pm 0.25 \\ 8.7 \pm 1.0 \end{vmatrix}$
Total	2840 ± 50	6430 ± 80	5850 ± 80	358 ± 12	428 ± 15	194 ± 5	156 ± 6
Data	2827	6429	5865	354	420	190	170

Simen Hellesund (UiB)

Measurement of Higgs CP in ATLAS

• Sources of uncertainty on α and κ'_t

Uncertainty source	$\Delta \alpha$	[°]
Process modelling		
Signal modelling	+8.8	-14
$t\bar{t} + \ge 1b$ modelling		
$t\bar{t} + \ge 1b \text{ 4V5 FS}$	+23	-37
$t\bar{t} + \ge 1b$ NLO matching	+22	-33
$t\bar{t} + \ge 1b$ fractions	+14	-21
$t\bar{t} + \ge 1b$ FSR	+5.2	-9.9
$t\bar{t} + \ge 1b$ PS & hadronisation	+16	-24
$t\bar{t} + \geq 1b p_{T}^{b\bar{b}}$ shape	+5.4	-4.6
$t\bar{t} + \ge 1b$ ISR	+14	-24
$t\bar{t} + \geq 1c$ modelling	+6.6	-11
$t\bar{t}$ + light modelling	+2.5	-4.7
b-tagging efficiency and mis-tag rates		
b-tagging efficiency	+8.7	-15
<i>c</i> -mis-tag rates	+6.7	-11
<i>l</i> -mis-tag rates	+2.3	-2.7
Jet energy scale and resolution		
<i>b</i> -jet energy scale	+1.6	-3.8
Jet energy scale (flavour)	+7.8	-11
Jet energy scale (pileup)	+5.2	-7.9
Jet energy scale (remaining)	+8.1	-13
Jet energy resolution	+5.7	-9.3
Luminosity	$\leq \pm$:1
Other sources	+4.9	-8
Total systematic uncertainty	+41	-54
$t\bar{t} + \ge 1b$ normalisation	+8.2	-13
κ'_t	+17	-33
Total statistical uncertainty	+32	-49
Total uncertainty	+52	-73

Simen Hellesund (UiB)

Measurement of Higgs CP in ATLAS

Phys. Lett. B 849 (2024) 138469

Uncertainty source	Δ	κ'_t
Process modelling		
Signal modelling	+0.10	-0.10
$t\bar{t} + \ge 1b$ modelling		
$t\bar{t} + \ge 1b \text{ 4V5 FS}$	+0.08	-0.23
$t\bar{t} + \ge 1b$ NLO matching	+0.15	-0.30
$t\bar{t} + \geq 1b$ fractions	+0.09	-0.21
$t\bar{t} + \geq 1b$ FSR	+0.01	-0.02
$t\bar{t} + \ge 1b$ PS & hadronisation	+0.09	-0.20
$t\bar{t} + \geq 1b p_{T}^{b\bar{b}}$ shape	+0.07	-0.11
$t\bar{t} + \ge 1b$ ISR	+0.07	-0.17
$t\bar{t} + \geq 1c$ modelling	+0.04	-0.10
$t\bar{t}$ + light modelling	+0.00	-0.01
b-tagging efficiency and mis-tag rates		
b-tagging efficiency	+0.06	-0.12
<i>c</i> -mis-tag rates	+0.03	-0.07
<i>l</i> -mis-tag rates	+0.01	-0.03
Jet energy scale and resolution		
<i>b</i> -jet energy scale	+0.02	-0.02
Jet energy scale (flavour)	+0.01	-0.05
Jet energy scale (pileup)	+0.02	-0.05
Jet energy scale (remaining)	+0.04	-0.08
Jet energy resolution	+0.03	-0.09
Luminosity	$\leq \pm 0$.01
Other sources	+0.03	-0.07
Total systematic uncertainty	+0.29	-0.45
$t\bar{t} + \geq 1b$ normalisation	+0.05	-0.15
α	+0.08	-0.07
Total statistical uncertainty	+0.09	-0.10
Total uncertainty	+0.30	-0.46

$H \rightarrow \tau \bar{\tau}$

Acoplanarity distribution in the "high" sensitivity signal regions.

Simen Hellesund (UiB)

Measurement of Higgs CP in ATLAS

$H \rightarrow \tau \bar{\tau}$

Branching fractions and selection criteria.

Decay channel	Decay mode combination	Method	Fraction in all τ -lepton-pair decays
	ℓ–1p0n	IP	8.1%
Tlep Thad	ℓ–1p1n	$IP-\rho$	18.3%
-	ℓ–1pXn	$IP-\rho$	7.6%
	ℓ–3p0n	$IP-a_1$	6.9%
	1p0n-1p0n	IP	1.3%
	1p0n-1p1n	$IP-\rho$	6.0%
	1p1n-1p1n	ρ	6.7%
Thad Thad	1p0n-1pXn	$IP-\rho$	2.5%
	1p1n-1pXn	ρ	5.6%
	1p1n-3p0n	$\rho - a_1$	5.1%

Simen Hellesund (UiB)

Measurement of Higgs CP in ATLAS

Eur. Phys. J. C 83 (2023) 563

Channel	Signal region	Decay mode combination	Selection criteria
	High	ℓ–1p0n	$\begin{split} d_0^{\rm sig}(e) &> 2.5 \text{ or } d_0^{\rm sig}(\mu) > 2.0 \\ d_0^{\rm sig}(\tau_{\rm 1p0n}) > 1.5 \end{split}$
	nigii	ℓ–1p1n	$\begin{split} d_0^{\rm sig}(e) &> 2.5 \text{ or } d_0^{\rm sig}(\mu) > 2.0 \\ & y^\rho(\tau_{\rm 1p1n}) > 0.1 \end{split}$
$\tau_{lep}\tau_{had}$	Madium	ℓ–1pXn	$\begin{split} d_0^{\rm sig}(e) &> 2.5 \text{ or } d_0^{\rm sig}(\mu) > 2.0 \\ & y^\rho(\tau_{\rm 1pXn}) > 0.1 \end{split}$
	Wedium	ℓ–3p0n	$\begin{split} d_0^{\rm sig}(e) &> 2.5 \text{ or } d_0^{\rm sig}(\mu) > 2.0 \\ & y^{a_1}(\tau_{\rm 3p0n}) > 0.6 \end{split}$
	Low	All above	Not satisfying selection criteria
Channel	Signal region	Decay mode combination	Selection criteria
Н		1p0n-1p0n	$ d_0^{sig}(\tau_1) > 1.5$ $ d_0^{sig}(\tau_2) > 1.5$
	High	1p0n-1p1n	$\begin{split} d_0^{\rm sig}(\tau_{\rm 1p0n}) &> 1.5 \\ y^{\rho}(\tau_{\rm 1p1n}) &> 0.1 \end{split}$
		1p1n-1p1n	$ y^\rho(\tau_1)y^\rho(\tau_2) >0.2$
$\tau_{\rm had} \tau_{\rm had}$		1p0n–1pXn	$ d_0^{sig}(\tau_{1p0n}) > 1.5$ $ y^{\rho}(\tau_{1pXn}) > 0.1$
	Medium 1p1n-1pXn	1p1n-1pXn	$ y^{\rho}(\tau_{1p1n})y^{\rho}(\tau_{1pXn}) > 0.2$
		1p1n-3p0n	$ y^{\rho}(\tau_{1p1n}) > 0.1$ $ y^{a_1}(\tau_{3p0n}) > 0.6$
	Low	All above	Not satisfying selection criteria

• Sources of uncertainty on α

Simen Hellesund (UiB)

Eur. Phys. J. C 83 (2023) 563

Set of nuisance parameters	Impact on ϕ_{τ} [degrees
Jet energy scale	3.4
Jet energy resolution	2.5
Pile-up jet tagging	0.5
Jet flavour tagging	0.2
$E_{\mathrm{T}}^{\mathrm{miss}}$	0.4
Electron	0.3
Muon	0.9
$\tau_{\rm had}$ reconstruction	1.0
Misidentified τ	0.6
τ_{had} decay mode classification	0.3
π^0 angular resolution and energy scale	0.2
Track (π^{\pm} , impact parameter)	0.7
Luminosity	0.1
Theory uncertainty in $H \rightarrow \tau \tau$ processes	1.5
Theory uncertainty in $Z \rightarrow \tau \tau$ processes	1.1
Simulated background sample statistics	1.4
Signal normalisation	1.4
Background normalisation	0.6
Total systematic uncertainty	5.2
Data sample statistics	15.6
Total	16.4

Measurement of Higgs CP in ATLAS

es]

