Grenoble, France April 2024 31st International Workshop on Deep Inelastic Scattering

Multiboson production in CMS

Cristiano Tarricone^(a,b)

on behalf of the CMS Collaboration

UNIVERSITÀ DI TORINO

(a) Università degli Studi di Torino(b) INFN Torino

Diboson production

Diboson production

- Measurement of the cross section of di-boson production processes including
 - vector boson scattering (VBS)
 - valuable precision tests for the electroweak sector of the SM
 - triple and quartic gauge couplings (TGC, QGC) involved
 - double parton scattering (DPS)

- allows precision tests of initial and final state radiation, and multi-parton interaction

- central exclusive production (CEP) processes e.g. $p\gamma\gamma p \rightarrow pVVp$ - $\gamma\gamma \rightarrow VV VBS$ processes involved as well, including $\gamma\gamma VV QGCs$
- The cross section measurements allowed to achieve more stringent constraints on SM deviations coming from anomalous gauge couplings (aTGC, aQGC) interpreted in the context of the SM-effective field theory (SM-EFT) framework.

Dedicated talk by

C. Carrivale today

First measurement of opposite-sign WW(+jets) production at $\sqrt{s} = 13.6$ TeV

with this analysis:

e μ+2ν (+jets)

• Importance of OS-WW production

W⁺W⁻ inclusive

- Sensitive to vector boson self-interactions
- Test for perturbative-QCD & electroweak predictions
 Final state studied
- 3 production processes
 - $\circ \quad qq \to WW$
 - \circ gg \rightarrow WW

 \rightarrow corrected by a factor 1.4 (X sec. NLO/LO)

 $\circ \quad \ \ H \rightarrow WW$

~10 times smaller \rightarrow bkg. for this analysis

• Normalization of the main background constrained by data in Control Regions

CMS – SMP – 24 – 001 New CMS result!

DIS2024

First measurement of opposite-sign WW(+jets) production at $\sqrt{s} = 13.6$ TeV

CMS Run 3 data (2022 only) \rightarrow L = 34.8/fb

Cristiano Tarricone

CMS

CDF v

ň

 \sqrt{s} (TeV)

14

D0 ۸

12

ATLAS

First observation of DPS WW production

The CMS Collaboration

DIS2024

Cristiano Tarricone

7

 $Z(\rightarrow \nu \nu)\gamma$

 $Z(\rightarrow 2\nu)+\gamma$

 \rightarrow suitable to detect **anomalous Neutral Triple** Gauge Coupling (aNTGC) as an excess or a deficit relative to the SM production

Note: **clean final state signature** with **high branching fraction** (2 times the charged lepton signature)

New	CMS	result!
-----	-----	---------

CMS.

Triboson production

Tri-boson production

- Measurement of the **cross section** of **tri-boson** production processes
 - valuable **precision tests** for the electroweak sector of the SM
 - novel observation of very rare processes
 - TGCs and QGCs involved
- Like VBS analyses, tri-boson processes measurements allow to achieve more stringent limits on aTGCs and aQGCs interpreted in the SM-EFT context.

VVV

Observation of the **combined** electroweak production of **three massive vector bosons** VVV (Apr. 2020)

$W^{\pm}W^{\pm}W^{\mp}$	$\ell^{\pm} \nu \ell^{\pm} \nu qq'$	2 l
$W^{\pm}W^{\pm}W^{\mp}$	$\ell^{\pm}\nu$ $\ell^{\pm}\nu$ $\ell^{\mp}\nu$	3 l
$W^{\pm}W^{\pm}Z$	$\ell^{\pm} \nu \ \ell^{\pm} \nu \ \ell^{\pm} \ell^{\mp}$	4 (
$W^{\pm} Z Z$	$\ell^{\pm}\nu$ $\ell^{\pm}\ell^{\mp}$ $\ell^{\pm}\ell^{\mp}$	5 l
ZZZ	$\ell^{\pm}\ell^{\mp} \ \ell^{\pm}\ell^{\mp} \ \ell^{\pm}\ell^{\mp}$	6 l

Allowed

3

2

 $1.15 \begin{array}{c} +0.45 \\ -0.40 \end{array} \begin{array}{c} +0.32 \\ -0.30 \end{array}$

0.86 +0.35 +0.32

2.24 +1.92 +1.78

Signal strength µ

< 5.4

0

Analysis strategy

 $\mathbf{V} \boldsymbol{v}$

- Measurement of Vγγ fully leptonic channels
 - \circ Wyy can be produced via QGC
 - \circ Zyy does not involve QGCs (in the SM)

Z(W)

 $\bar{\ell}(\bar{v}_{\rho})$

W

w

- γ can also be produced via ISR/FSR
- Data-driven method for major bkg.s estimation:
 - Jets misid. as $\gamma \rightarrow CR : V + \gamma loose$ -
 - Electrons misid. as γ , *e.g.* $Z\gamma \rightarrow ee\gamma [e\gamma\gamma]$ \rightarrow subtract $Z\gamma \rightarrow ee\gamma (MC)$ before computing FR
 - $\circ \qquad \text{QCD: } t\gamma, tt\gamma, tt\gamma\gamma, VV\gamma \rightarrow \text{from MC}$
- Systematics from data-driven background estimated by inverting lepton isolation and applying same strategy

- Measurement of WWγ with fully leptonic final state sensitive to:
 - TGCs, QGCs
 - Higgs-gauge couplings
 - Higgs-light quarks couplings
- Data-driven method for estimating bkg. processes containing a prompt lepton/photon
 - Ζγ
 - \circ ttbar+ γ
 - \circ single-top
- Control Regions to validate the bkg. estimations:
 - $\circ \quad SSWW\gamma$
 - $\circ \quad \text{Top } \gamma$

Main difference to SR selection:

 $\rightarrow m_{_{\rm T}}^{_{_{\rm WW}}} > 10~GeV$ cut not applied in the CR

CMS – SMP – 22 – 006 *PRL 132 121901*

WWY Results
Process
$WW\gamma$
QCD V γ
VV
Тор
Nonprompt ℓ
Nonprompt γ
Expected
Observed
Top Nonprompt ℓ Nonprompt γ Expected Observed

Measured fiducial cross section:
$\sigma = 6.0 \pm 1.0 (ext{stat}) \pm 1.0 (ext{syst}) \pm 0.9 (ext{theo}) ext{ fb}$
$\mu = 1.31 \pm 0.17 (\text{stat}) \pm 0.21 (\text{syst})$ 5.6(4.7) S.D.

Process	$\sigma_{\rm up}$ pb exp.(obs.)	Yukawa couplings limits exp.(obs.)
$u\overline{u} \rightarrow H + \gamma \rightarrow e\mu\gamma$	0.067 (0.085)	$ \kappa_{\rm u} \le 13000 \ (16000)$
$d\overline{d} ightarrow H + \gamma ightarrow e \mu \gamma$	0.058 (0.072)	$ \kappa_{\rm d} \leq$ 14000 (17000)
$s\overline{s} ightarrow H + \gamma ightarrow e \mu \gamma$	0.049 (0.068)	$ \kappa_{\rm s} \le 1300 \ (1700)$
$c\overline{c} ightarrow H + \gamma ightarrow e \mu \gamma$	0.067 (0.087)	$ \kappa_{\rm c} \leq 110(200)$

 CMS - SMP - 22 - 006
 PRL 132 121901

 The CMS Collaboration
 PRL 132 121901

DIS2024

CMS preliminary 3 µb⁻¹ - 138 fb⁻¹ (2.76,5.02,7,8,13,13.6 TeV) PRD 89 (2014) 092005 5 fb⁻¹ 7 TeV g(Wy) = 3.4e+05 fb 137 fb-1 WY 13 Tay PRI 126 252002 (2021) d(Wy) = 1 40±05 th 7 TeV 5 fb⁻¹ Zγ PRD 89 (2014) 092005 $\sigma(7v) = 1.6e + 05 fb$ ZY 8 TeV IHEP 04 (2015) 164 20 fb⁻¹ ww PRL 127 (2021) 191801 a(WW) = 3.7e+04 fb 302 pb⁻¹ ww 7 TeV FPIC 73 (2013) 2610 o(WW) = 5.2e+04 fb 5 fb⁻¹ ww 8 TeV EPIC 76 (2016) 401 o(WW) = 6e+04 fb 19 fb⁻¹ ww 36 fb⁻¹ 13 TeV PRD 102 092001 (2020 o(WW) = 1.2e+05 fb WZ WZ 302 pb⁻¹ 5 fb⁻¹ g(V(Z) = 6.4e+03 fb 5.02 TeV PRI 127 (2021) 191801 7 ToV EPIC 77 (2017) 236 $d00(7) = 20 \pm 0.4 \text{ fb}$ wz 20 fb⁻¹ 8 TeV EPIC 77 (2017) 236 o(WZ) = 2.4e+04 fb wz 13 TeV (HEP 07 (2022) 032 o(WZ) = 5.1e+04 fb 137 fb-1 ZZ d(ZZ) = 5.3e+03 fb 302 pb-1 PRL 127 (2021) 19180 zz 7 TeV [HEP 01 (2013) 063 o(ZZ) = 6.2e+03 fb 5 fb⁻¹ ZZ 8 TeV PLB 740 (2015) 250 d(ZZ) = 7.7e+03 fb ● 20 fb-1 (ZZ) = 1.7e+04 fb ▲ 137 fb-1 ZZ 13 TeV EPIC 81 (2021) 200 137 fb⁻¹ VVV PRL 125 151802 (2020) a(V/V) = 1e+03 fb 137 fb-1 www 13 TeV PRL 125 151802 (2020) o(WWW) = 5.9e+02 fb wwz 13 TeV PRL 125 151802 (2020 o(WWZ) = 3e+02 fb 137 fb-1 WZZ 137 fb-1 13 TeV PRL 125 151802 (2020) o(WZZ) = 2e+02 fb ZZZ 13 TeV PRL 125 151802 (2020) o(ZZZ) < 2e+02 fb 137 fb⁻¹ 19 fb⁻¹ WVy 8 TeV PRD 90 032008 (2014) a(WVy) < 3.1e+02.fb138 fb-1 WWY 13 TeV SMP-22-006 q(WWy) = 6 fb19 fb⁻¹ Wyy 8 TaV IHEP 10 (2017) 072 o(Wyy) = 4.9 fb Wyy HEP 10 (2021) 174 137 fb-1 $\sigma(Wyy) = 14 \text{ fb}$ o(Zyy) = 13 fb ZYY 8 TeV HEP 10 (2017) 072 19 fb⁻¹ 13 TeV JHEP 10 (2021) 174 (Zyy) = 5.4 fb 137 fb-1 ZW 1.0e+00 1.0e+02 1.0e+04 1.0e+06 1.0e+08 1.0e+10 1.0e+12 1.0e+14 August 2023 Measured cross sections and exclusion limits at 95% C.L Inner colored bars statistical uncertainty, outer narrow bars statistical+systematic uncertainty σ [fb] See here for all cross section summary plots Light to Dark colored bars: 2.76, 5.02, 7, 8, 13, 13.6 TeV, Black bars: theory prediction

Overview of CMS cross section results

- Most of the recent results achieved by the CMS Collaboration on di-boson, and tri-boson production processes including the most recent constraints on SM deviations coming from anomalous couplings in multi-boson processes were also reported
- Di-boson: precision era \rightarrow NNLO.

Good agreement with MC predictions 🔽

• Triboson: some processes already measured \rightarrow need for higher sensitivity with future analyses

Summary

Stay tuned for Run 3 and beyond!

Thank you!

BACKUP

Vector Boson Scattering in CMS

Constraints on anomalous quartic gauge couplings (aQGCs)

OS-WW+2jets \rightarrow VBS study crucial in investigating the EWSB mechanism

Analysis strategy:

- → Signal region splitted in 2 regions basing on the centrality of the *ll* system wrt the tagging jets
- Ttbar control region (inverted b-veto) \rightarrow
- \rightarrow Drell-Yan control region

Zeppenfeld variable $Z_{\ell\ell} = \frac{1}{2} |Z_{\ell_1} + Z_{\ell_2}|$ where $Z_{\ell} = \eta_{\ell} - \frac{1}{2}(\eta_{j_1} + \eta_{j_2})$

Definition of a **fiducial volume** close to the reconstructed SR

Objects	Requirements		
	$e\mu$, ee , $\mu\mu$ final state, opposite charge		
Leptons	$p_{\mathrm{T}}^{\ell} = p_{\mathrm{T}}^{bare\ell} + \sum_{i} p_{\mathrm{T}}^{\gamma_{i}} ext{ if } \Delta R(\ell,\gamma_{i}) < 0.1$		
	$p_{\rm T}^{\ell_1} > 25 { m GeV}, p_{\rm T}^{\ell_2} > 13 { m GeV}, p_{\rm T}^{\ell_3} < 10 { m GeV}$		
	$ \eta < 2.5$		
	$p_{\mathrm{T}\ell\ell} > 30\mathrm{GeV}$, $m_{\ell\ell} > 50\mathrm{GeV}$		
	$p_{\mathrm{T}}^{j} > 30 \mathrm{GeV}$		
Jets	$\Delta \hat{R}(j,\ell) > 0.4$		
	At least 2 jets, no b jets		
	$ \eta < 4.7$		
	$m_{ m jj} > 300 { m GeV}, \Delta \eta_{ m jj} > 2.5$		
MET	$p_{\rm T}^{\rm miss} > 20 { m GeV}$		

Use of a **DNN** to separate VBS signal from ttbar and QCD-induced WW bkg.s

0.6 0.8 1 DNN output 02 Signal extraction based on a

Higgs

VBS

Multiboson

tW and tT

138 fb⁻¹ (13 TeV)

Z₁₁ > 1

Nonprompt

QCD-induced WW

binned maximum likelihood fit

First observation of the EW production of a OS-WW pair (fully leptonic decay) in association with 2 jets

Measured (expected) fiducial cross section: 10.2 ± 2.0 fb $(9.1 \pm 0.6 \text{ fb})$

Significance observed (expected): 5.6 (5.2) S.D.

ZZ SM evidence and aQGC limits

- ZZ electroweak production (fully leptonic channel) associated with a jet pair
- Irreducible dominant bkg.: QCD-induced ZZjj prod.
- MELA (Matrix Element Likelihood Approach) discriminant used to extract the signal (performance checked vs. BDT w/28 inputs variables)

137 fb⁻¹ (13 TeV)

First evidence of the EW ZZ production (4ljj final state)

CMS

<u>Observed (expected) signal</u> <u>strength:</u> $\mu_{EW} = 1.21^{+0.47}_{-0.40} (1.00^{+0.43}_{-0.36})$

Significance observed (expected): 4.0 (3.5) S.D.

Coupling	Exp. lower	Exp. upper	Obs. lower	Obs. upper	Unitarity bound
$f_{\rm T0}/\Lambda^4$	-0.37	0.35	-0.24	0.22	2.4
$f_{\rm T1}/\Lambda^4$	-0.49	0.49	-0.31	0.31	2.6
$f_{\rm T2}/\Lambda^4$	-0.98	0.95	-0.63	0.59	2.5
$f_{\rm T8}/\Lambda^4$	-0.68	0.68	-0.43	0.43	1.8
$f_{\rm T9}/\Lambda^4$	-1.5	1.5	-0.92	0.92	1.8

First observation (May 2020) of the EW $W\gamma$ production (ljj+MET final state) combining 8 TeV & (2016) 13 TeV center-of-mass-energy data collected by CMS

<u>Combined observed (expected) significance</u>: 5.3 (4.8) S.D.

CMS - SMP - 19 - 008

Constraining on aQGCs

- → Dimension-8 EFT op.s
- \rightarrow m_{Wy} used
- → Maximum-likelihood fit profiling the syst. unc.

The CMS Collaboration

DIS2024

23

CMS

24

Bins

Bins

CMS - SMP - 21 - 001

Important variables for this analysis: $\xi_i = \frac{\Delta p_i}{p_p} \quad M_{ij}\sqrt{s\xi_i\xi_j} \quad y_{ij} = \frac{1}{2}\log\frac{\xi_i}{\xi_j}$ Main bkg.: diffractive PU \rightarrow data-driven method

95% CL limit on σ/σ_{AQGC}

10

Defined CRs reverting the requirement on **acoplanarity**

CMS - SMP - 21 - 014

DIS2024

Cristiano Tarricone

pVVp

Coupling	Observed (expected) 95% CL upper limit	Observed (expected) 95% CL upper limit	
	No cupping	Chipping at 1.4 lev	
$ a_0^W / \Lambda^2 $	$4.3 (3.9) \times 10^{-6} \text{GeV}^{-2}$	$5.2 (5.1) \times 10^{-6} \text{GeV}^{-2}$	
$ a_C^W/\Lambda^2 $	$1.6~(1.4) imes 10^{-5}{ m GeV^{-2}}$	$2.0~(2.0) \times 10^{-5} \mathrm{GeV}^{-2}$	
$ a_0^Z/\Lambda^2 $	$0.9~(1.0) imes 10^{-5} { m GeV}^{-2}$	—	
$ a_C^Z/\Lambda^2 $	$4.0~(4.5) imes 10^{-5} { m GeV}^{-2}$	—	
Coupling	Observed (expected)	Observed (expected)	
	95% CL upper limit	95% CL upper limit	
	No clipping	Clipping at 1.4 TeV	
$ f_{M,0}/\Lambda^4 $	$66.0~(60.0)~{\rm TeV^{-4}}$	79.8 (78.2) TeV ⁻⁴	
$ f_{M,1}/\Lambda^4 $	$245.5~(214.8){\rm TeV}^{-4}$	$306.8 (306.8) \mathrm{TeV}^{-4}$	
$ f_{M,2}/\Lambda^4 $	9.8 (9.0) TeV $^{-4}$	11.9 (11.8) TeV^{-4}	
$ f_{M,3}/\Lambda^4 $	73.0 (64.6) TeV^{-4}	91.3 (92.3) TeV $^{-4}$	
$ f_{M,4}/\Lambda^4 $	$36.0(32.9)\mathrm{TeV}^{-4}$	$43.5 (42.9) \mathrm{TeV}^{-4}$	
$ f_{M,5}/\Lambda^4 $	$67.0~(58.9)~{\rm TeV}^{-4}$	83.7 (84.1) TeV $^{-4}$	
$ f_{M,7}/\Lambda^4 $	$490.9 (429.6) \mathrm{TeV}^{-4}$	$613.7~(613.7)~{\rm TeV}^{-4}$	

CMS - SMP - 19 - 013

JHEP 10 (2021) 174

0

Ο

γ

DIS2024