Higgs boson differential cross-section measurements at CMS

Alessandra Cappati

(LLR, École Polytechnique, in2p3, CNRS)

On behalf of the CMS Collaboration

31st International Workshop on Deep Inelastic Scattering 9 April 2024

Differential cross-sections measurements \rightarrow key to Higgs boson properties characterization

test of SM predictions for full spectra of variable of interest

probe possible BSM hints

Measured in **fiducial phase space** \rightarrow largely **model independent** \rightarrow results can be compared between channels and experiments, and with multiple theoretical models

Full Run 2 results from CMS in different decay channels

Aim: provide **model independent** characterization of the Higgs boson properties (even if SM is assumed when calculating the acceptance)

Data **unfolded** to correct for the detector effects \rightarrow allow **direct comparison** with different **theoretical predictions**

Fiducial phase space defined to closely match experimental acceptance and analysis selection

Fiducial cross-section also measured **differentially** \rightarrow many kinematical variables sensitive to possible BSM

H-bosons

$H \rightarrow \gamma \gamma$

- Signal: events with 2 energetic photons
- Bkg: SM γγ, γj, jj
- Results: ML fits on m

H→ZZ

 Signal: events with 4 OS SF leptons (e, μ)

137 fb⁻¹ (13 TeV)

160 m₄₇ (GeV)

Data

EW

Z+X

140

H(125)

 $q\bar{q}\rightarrow ZZ, Z\gamma^*$

 $gg \rightarrow ZZ, Z\gamma^*$

- Bkg: qqZZ, ggZZ, Z+X
- Results: ML fits on m_{zz}

100

Eur. Phys. J. C 81 (2021) 488

120

CMS

250

200

150

100

50

Events / 2 GeV

$H \rightarrow WW$

- Signal: events with $1e+1\mu + p_{miss}^{T} > 20 \text{ GeV}$
- Bkg: SM WW, tt+tW, ττ, nonprompt leptons
- Results: fits on $(m_{\parallel}, m_{T}^{H})$

137 fb⁻¹ (13 TeV)

A.Cappati

$H \rightarrow \text{fermions:}$ inclusive results

CMS

• **First** differential results in $H \rightarrow \tau \tau$

• both channels **statistically dominated**

A.Cappati

Higgs boson pt

- p_{τ}^{H} distribution probes perturbative **QCD modelling** of Higgs production
- Variations of couplings can **distort shape** of p_{T}^{H} spectrum
- Different models provided by theorists to describe shape distortions

Higgs boson p^{T} : interpretations

 $p_T^{H} \rightarrow$ set limits on **H self-coupling** and constraints on **couplings modifiers** to **b** and **c quarks**

- sizable contributions from **ttH** and **VH** for \mathbf{k}_{λ}
 - \rightarrow thanks to larger V and top masses
- ggH used to set constraints on k_b and k_c
 - \rightarrow possible modification from b and c quarks in ggH loop

H→ZZ JHEP 08 (2023) 040

- Higgs boson rapidity
 - \boldsymbol{y}^{H} probes the **PDFs** and Higgs boson **production** modes
 - measurement statistically dominated
 - 20-30 % precision with full Run2 statistics

Number of Jets

Jet variables useful to test **modelling** of **QCD radiation** and **production mechanisms** \rightarrow H \rightarrow $\tau\tau$ channel great handle for large jet multiplicity region

Jet variables useful to test **modelling** of **QCD radiation** and **production mechanisms** $\rightarrow H \rightarrow \tau \tau$ channel great handle for high p_T region

Leading jet p^{T}

JHEP 08 (2023) 040

Jet variables useful to test modelling of QCD radiation and production mechanisms \rightarrow kinematics of di-jet, H+j, H+jj systems \rightarrow 0-jet bin defined

Other jet observables

Rapidity-weighted jet observables

Jet transverse momentum **weighted** by a **function of jet rapidity**

 \rightarrow useful to **test QCD resummation**

 \rightarrow 0-jet bin defined

H→ZZ JHEP 08 (2023) 040

Decay observables

- 7 parameters fully describing the $H\rightarrow 4I$ decay:
 - Z masses (m_{z1}, m_{z2})
 - Angular variables for fermion kinematics (Φ , $\cos \Theta_1$, $\cos \Theta_2$)
 - Angular variables connecting production and decay (Φ_1 , cos Θ^*)

Results divided for identical (4e+4µ) and different (2e2µ) flavour final states → highlight sensitivity of same-flavour lepton interference effects

H→ZZ

JHEP 08 (2023) 040

CMS

ME discriminants sensitive to HVV anomalous couplings $\rightarrow D_{0^{-}}^{dec}$ sensitive to possible CP-violation effects \rightarrow more discriminants in the paper

- Results compared to different BSM hypotheses
- Presented separately for identical (4e+4µ) and different (2e2µ) flavour final states

H→ZZ

JHEP 08 (2023) 040

A.Cappati

A.Cappati

CMS

Run2 data allow extensive study of differential Higgs boson cross-sections

Variety of measurement reported in different decay channels:

- observables targeting production and decay
- double differential observables
- **interpretation** of p_T spectrum
- → Differential distributions provide a handle to set limits on various BSM couplings

No tensions with SM observed

Precision measurement has just started!

- Still statistically limited
- Many improvements already in place!

