

SEARCH FOR RARE HIGGS DECAYS AND PRODUCTION MODES AT CMS

ROBERTO COVARELLI (UNIV./INFN TORINO) ON BEHALF OF THE CMS COLLABORATION

DIS 2024, HIGGS SESSION, 9 APRIL 2024

4/2/2024

R. Covarelli

HIGGS BOSON: SM VS. MEASUREMENTS

 $\mu = \sigma_{meas} / \sigma_{SM}$

If NP in the Higgs sector, it may hide in **little-known couplings**

- PRODUCTION MODES:
 - Several unmeasured (or barely explored) production modes: tH, bbH, γH...
- DECAYS:
 - Boson decay channels well established, except Zγ
 - Couplings with 1st and 2nd-generation fermions largely unknown

4/2/2024

R. Covarelli

RARE PRODUCTION MODES

 NOTE: Unless differently specified, all results are based on the CMS dataset from LHC Run2 (L = 138 fb⁻¹ at √s = 13 TeV)

tH SEARCHES

- Single-top + Higgs production
 - tHq
 - tHb
 - tHW
 - Total cross-section of the 3 contributions ~80 fb @ 13 TeV
- Theoretically and experimentally linked to ttH production mode
 - The two processes interfere (at different levels depending on 4- or 5-flavor scheme description)
 - Combined measurement is a probe of CP admixtures in the top-Higgs coupling
 - Very close final states, typically tH is a subdominant contribution in the ttH event yields → dedicated selection categories
- Current best CMS tH results from b-jet + multi-lepton final states (H \rightarrow WW, $\tau\tau$ etc.)
 - μ_{tH} = 5.7 ± 2.7 (stat.) ± 3.0 (syst.)
 - First limits on CP-odd couplings

CMS coll., Eur. Phys. J. C81 (2021) 378 CMS coll., JHEP 07 (2023) 092

R. Covarelli

tH IN THE H $\rightarrow b\bar{b}$ FINAL STATE

- Largest sensitivity in semileptonic categories (1 lepton from W decay + n jets, of which at least m are b-tagged)
- Dedicated categories enriched in tHq or tHW in multi-class ANNs based on many variables related to kinematics and btagging
- Fits of event yields or ANN shape templates in categories
- SM signal strength determined in two hypotheses:

 - Both μ free

CMS-PAS-HIG-19-011 (2023)

bbH WITH MULTILEPTONS

CMS-PAS-HIG-23-003 (2024)

- Cross-section similar to ttH, but more challenging experimentally
 - Less distinguishing event signature
 - Destructive interference with other production modes
- Multilepton final states (including τ with hadronic decays)
 - State-of-the-art DNN-based $\boldsymbol{\tau}$ and b-jet identification

- BDTs trained in 4 event categories (eµ, eτ_h, μτ_h, τ_hτ_h)
- Output scores values defining event "classes" (HWW, Ηττ, other)
- Template fits in classes

$\gamma H WITH H \rightarrow W^+W^-$

CMS coll., Phys.Rev.Lett. 132 (2024) 121901

- Vanishing cross-section for $gg \rightarrow \gamma H$
 - Dominant diagrams sensitive to anomalous Hqq or Hγγ/HZγ couplings
- Very clean final state (eµγ + p_{T,miss})
 - Non-prompt lepton/ γ fraction from data
 - 2-dimensional fit in $m_{T,WW}$, $m_{e\mu\gamma}$
 - Result interpreted in terms of constraints to multipliers of SM Hqq couplings (κ_q)

Process	κ_q limits obs. (exp.) at 95% CL
$u\overline{u} \rightarrow H + \gamma \rightarrow e\mu\nu_e\nu_\mu\gamma$	$ \kappa_{\rm u} \le 16000 \ (13000)$
$d\overline{d} \rightarrow H + \gamma \rightarrow e \mu \nu_e \nu_\mu \gamma$	$ \kappa_{ m d} \le 17000$ (14000)
${ m s}\overline{ m s} ightarrow{ m H}+\gamma ightarrow{ m e}\mu { u}_{ m e} { u}_{\mu} \gamma$	$ \kappa_{ m s} \le 1700$ (1300)
$c\overline{c} \rightarrow H + \gamma \rightarrow e \mu \nu_e \nu_\mu \gamma$	$ \kappa_{\rm c} \le 200 \ (110)$

RARE DECAYS

• NOTE: Unless differently specified, all results are based on the CMS dataset from LHC Run2 (L = 138 fb⁻¹ at \sqrt{s} = 13 TeV)

$H \rightarrow Z\gamma \ CMS$

CMS coll., JHEP 05 (2023) 233

- Use $Z \rightarrow I^+I^-$ decay
- Event classification by production mode to isolate larger-purity categories
 - One additional lepton (targeting WH/ZH)
 - Two additional jets (targeting VBF)
 - Kinematic BDT discriminant trained → events further split in 3 categories based on output score
 - Untagged (targeting ggH)
 - 4 BDT categories
- Large background from Z+jets estimated from fits on m_{llγ} data sidebands

$H \rightarrow Z\gamma$ COMBINATION

ATLAS and CMS colls., Phys.Rev.Lett. 132 (2024) 021803

- Result combination with similar ATLAS analysis
 - Independent datasets, theory systematics correlated, experimental uncorrelated
- Both experiments consistently measuring small (nonsignificant) excess over SM
 - 3.4σ combined evidence
 - Best combined fit: $\mu = 2.2 \pm 0.7$
 - Agreement with SM expectation at the 1.9 σ level

$H \rightarrow VECTOR MESON + \gamma$

Η

- Expected BRs in the 10⁻⁵-10⁻⁶ range
 - Unique sensitivity to lightquark coupling through interference with dominant γγ* diagram
- $J/\psi\gamma$ and $\psi(2S)\gamma \rightarrow \mu^+\mu^-\gamma$: similar strategy as $Z\gamma$
 - Event categorization based on production modes
 - 1 b-jet (ttH + bbH); 2 jets (VBF); untagged (ggH)
 - Likelihood discriminant for ggH based on spin-correlation variables
 - Upper limits @95% CL from $m_{\mu\mu\gamma}$ fits
 - BR(H \rightarrow J/ $\psi\gamma$) < 2.6 $\cdot 10^{-4}$
 - BR(H $\rightarrow \psi(2S)\gamma) < 9.9 \cdot 10^{-4}$

CMS-PAS-SMP-22-012 (2023)

$H \rightarrow VECTOR MESON + \gamma$

CMS-PAS-HIG-23-005 (2024)

- $\rho\gamma$, $\phi\gamma$, $K^{*0}\gamma \rightarrow \gamma$ + di-track
 - Also targeting FCNC in final state
- Needs a dedicated high-level triggering technique
 - Definition of an isolated-meson object using similarities with hadronic $\boldsymbol{\tau}$ reconstruction
- Event categorization using production modes
 - 1 lepton (WH + ZH); 2 jets (VBF); untagged (ggH)
- BDT discriminants for less pure categories
- Upper limits @95% CL from $m_{t+t-\gamma}$ fits
 - BR(H $\rightarrow \rho\gamma$) < 3.7 $\cdot 10^{-4}$
 - BR(H $\rightarrow \phi \gamma$) < 3.0 $\cdot 10^{-4}$
 - BR(H \rightarrow K^{*0} γ) < 1.7 \cdot 10⁻⁴

$H \rightarrow e^+e^-$

CMS coll., Phys.Lett. B846 (2023) 137783

- $BR_{SM}(H \rightarrow e^+e^-) = 5 \cdot 10^{-9}$
- Event classification:
 - Two additional jets (targeting VBF)
 - Kinematic BDT discriminant trained → events further split in 2 categories based on output score
 - Untagged (targeting ggH)
 - 4 BDT categories
- Large background from DY directly fit from data
- Systematics/calibration/ resolution... etc. largely constrained from large Z → e⁺e⁻ data samples

CONCLUSIONS

- Higgs boson measurements in CMS have reached precisions of 10-20% on main production/decay modes
 - Corresponding to tight constraints on possible deviations from SM Higgsboson couplings

- Rare production modes and decays are the key to accessing less explored couplings
 - Closing in on tH and bbH production modes (limits are a few times the SM predictions)
 - Evidence for $Z\gamma$ sheds light on the last Higgs-to-bosons decay
 - Couplings to lightest particles (electrons, light quarks)? SM beyond CMS reach both now and in the future → signal observations would be clear hints of BSM physics
 - Rare-decay measurements statistically limited, expect large improvements from Run3 and high-luminosity phase

BACKUP

4/2/2024

$H \rightarrow AA \rightarrow 4B$

Challenging fully hadronic final state, consider mass range $12 < m_a < 60 \text{ GeV}$ <u>HIG-18-026</u>

- Feasible reconstruction in VH production mode, events selected using single or double-lepton trigger
- Resolved analysis: at least 3 jets in the selected events, categorised based on number of jets and bjets
- Signal-to-background discrimination using a BDT, score distribution compared to data

Assuming $B(H \rightarrow aa \rightarrow 4b) = 100\%$, ma values between 21-60 GeV are excluded at 95% CL

$H \not\rightarrow AA \not\rightarrow 4MU$

Model-independent search considering $0.21 < m_a < 60$ GeV and $0 < c\tau < 100$ mm

HIG-21-004

- Interpreted in terms of vector-portal, ALPs, NMSSM, dark-SUSY models
- Long-lived muon trigger utilised for 2018 data
- Reconstruct two dimuon pairs per event where $|m_{(\mu\mu)1} m_{(\mu\mu)2}| < f(m_{(\mu\mu)1} + m_{(\mu\mu)2})/2)$

95% CL upper limit on $\sigma(H \rightarrow 2a+X)xBR^2(a \rightarrow 2\mu)$, constrained within 0.049 and 0.247 fb

BBH BDT

Variable		$e\tau_{h}$	$u\tau_{h}$	$\tau_{l}\tau_{l}$
$m_{\tau\tau}$		\checkmark	\checkmark	\checkmark
m _{ario}		\checkmark	\checkmark	\checkmark
Collinear mass		\checkmark	\checkmark	×
D_r		\checkmark	\checkmark	×
Δn between lepton and τ_1		\checkmark	\checkmark	×
Total transverse mass		×	×	×
Di- $\tau p_{\rm T}$		\checkmark	\checkmark	\checkmark
Electron $p_{\rm T}$		×	×	×
Muon $p_{\rm T}$		×	×	×
$p_{\rm T}$ of leading $\tau_{\rm h}$		×	×	\checkmark
$p_{\rm T}$ of trailing $\tau_{\rm h}$		×	×	\checkmark
Transverse mass		\checkmark	\checkmark	×
Number of b-jets		×	\times	\checkmark
$p_{\rm T}$ of leading b-jet		\checkmark	\checkmark	\checkmark
$p_{\rm T}$ of trailing b-jet		\checkmark	\checkmark	×
B-tag score for leading b-jet		\checkmark	\checkmark	\checkmark
$\Delta \eta$ between di- $\tau p_{\rm T}$ and leading b-jet		\checkmark	\checkmark	×
B-tag score for trailing b-jet		\checkmark	\checkmark	\checkmark
Number of jets		×	×	\checkmark
$p_{\rm T}$ of leading jet		×	×	\checkmark
$p_{\rm T}$ of trailing jet		×	×	\checkmark
Di-jet invariant mass		×	×	\checkmark
Di-jet $\Delta \eta$	\checkmark	×	×	\checkmark
$p_{\rm T}^{\rm miss}$		×	×	\checkmark

PHI,RHO,K* GAMMA BREAKDOWN

	U.L. $\mathcal{B}(H \to \rho^0 \gamma)$		U.L. $\mathcal{B}(H \to \phi \gamma)$		U.L. $\mathcal{B}(H \to K^{*0}\gamma)$	
category	Exp.(10 ⁻⁴)	$Obs.(10^{-4})$	$Exp.(10^{-4})$	$Obs.(10^{-4})$	Exp.(10 ⁻⁴)	Obs. (10 ⁻⁴)
VH	$62.3^{+25.6}_{-17.9}$	73.7	$37.3^{+16.9}_{-11.3}$	45.0	$25.3^{+11.4}_{-7.3}$	48.5
low- p_{T}^{γ} VBF	$49.6\substack{+22.5 \\ -15.0}$	35.6	$33.1^{+18.7}_{-11.5}$	27.9	$18.8^{+8.90}_{-5.7}$	12.3
high- p_{T}^{γ} VBF	$22.9^{+10.5}_{-6.9}$	16.0	$16.0\substack{+9.0\\-5.5}$	10.7	$9.13^{+4.25}_{-2.75}$	6.66
ggH	$6.01\substack{+2.53 \\ -1.72}$	4.37	$3.08^{+1.33}_{-0.98}$	3.46	$2.20^{+0.94}_{-0.62}$	1.93
combined	$5.71^{+2.37}_{-1.63}$	3.74	$2.88^{+1.33}_{-0.83}$	2.97	$2.10\substack{+0.90\\-0.58}$	1.71

4/2/2024