UCLouvain

EFT interpretations in the Higgs sector at CMS

DIS2024: 31st International Workshop on Deep Inelastic Scattering, Grenoble, France

Oğuz Güzel* on behalf on the CMS Collaboration

*Université catholique de Louvain, Belgium

9 April 2024

Introduction

Motivation

- No indication of New Physics at the LHC
- Increase in luminosity w\o increase in collisions energy strongly motivates indirect searches
 - \rightarrow increasing number of Higgs EFT measurements in CMS

Standard Model Effective Field Theory - SMEFT

In a nutshell, the new particles can be parameterised by an **EFT** where \rightarrow the SM Lagrangian is supplemented by new operators and the theory has the same field content General form violate B-L number

$$\mathcal{L}_{\text{eff}} = \mathcal{L}_{\text{SM}} + \sum_{i} \frac{c_i^{(5)}}{\Lambda} \mathcal{O}_i^{(5)} + \sum_{i} \frac{c_i^{(6)}}{\Lambda^2}$$

where each $O_i^{(D)}$ is an $SU(3) \times SU(2) \times U(1)$ invariant operator and $c_i^{(D)}$ are called Wilson coefficients (WC) (if $c_i = 0 \rightarrow SM$) and Λ is the scale of the new physics (typically chosen as 1TeV). Heavy BSM states are integrated out.

 \Rightarrow to parameterise observable effects - constraints of parameters = constraints on mass and couplings of new particles

Oğuz Güzel

Higgs sector in the SMEFT

- SMEFT introduces ~2500 CP-even operators at d=6 and ~37000 operators at d=8 ...
- A set of operators generally used by CMS and ATLAS experiments: Warsaw Basis [link]
 - \rightarrow a parameterisation framework within the SMEFT, tailored for studying Higgs anomalous couplings (AC)
 - \rightarrow reduces the number of d=6 operators to 59, non-redundant

с _{НW}	$H^{\dagger}HW^{I}_{\mu u}W^{I\mu u}$	$\begin{array}{c} q \qquad \qquad$	C _{HB}	$H^{\dagger}HB_{\mu u}B^{\mu u}$	$\begin{array}{c} q \xrightarrow{Z \\ Z \\ q \xrightarrow{Z \\ Q} \end{array} \begin{array}{c} q \\ q \end{array} \begin{array}{c} q \\ q \end{array} \begin{array}{c} q \\ q \end{array}$	Some relevant l operators contribu			
C _{HWB}	$H^\dagger au^I H W^I_{\mu u} B^{\mu u}$	$\begin{array}{c} q \xrightarrow{\gamma \leq} q \\ \gamma \leq & H \\ q \xrightarrow{Z \leq} q \end{array}$	С _{НG}	$H^{\dagger}HG^{A}_{\mu u}G^{A\mu u}$	g	the Higgs product the SMEFT [<u>lin</u>			
- Observables: Effective fractional cross section e.g. HVV scattering amplitude:									
$\mathcal{A}(\text{HVV}) \sim \left[a_{1}^{\text{VV}} + \frac{\kappa_{1}^{\text{VV}} p_{1}^{2} + \kappa_{2}^{\text{VV}} p_{2}^{2}}{\left(\Lambda_{1}^{\text{VV}}\right)^{2}} \right] m_{\text{V1}}^{2} \epsilon_{\text{V1}}^{*} \epsilon_{\text{V2}}^{*} + a_{2}^{\text{VV}} f_{\mu\nu}^{*(1)} f^{*(2)\mu\nu} + a_{3}^{\text{VV}} f_{\mu\nu}^{*(1)} \tilde{f}^{*(2)\mu\nu} \right] f_{ai} = \frac{ a_{i} ^{2} \sigma_{i}}{\sum_{j} a_{j} ^{2} \sigma_{j}} \operatorname{sign}\left(\frac{a_{i}}{a_{1}}\right) f_{ai} = \frac{ a_{i} ^{2} \sigma_{i}}{\sum_{j} a_{j} ^{2} \sigma_{j}} \operatorname{sign}\left(\frac{a_{i}}{a_{1}}\right) f_{ai} = \frac{ a_{i} ^{2} \sigma_{i}}{\sum_{j} a_{j} ^{2} \sigma_{j}} \operatorname{sign}\left(\frac{a_{i}}{a_{1}}\right) f_{ai} = \frac{ a_{i} ^{2} \sigma_{i}}{\sum_{j} a_{j} ^{2} \sigma_{j}} \operatorname{sign}\left(\frac{a_{i}}{a_{1}}\right) f_{ai} = \frac{ a_{i} ^{2} \sigma_{i}}{\sum_{j} a_{j} ^{2} \sigma_{j}} \operatorname{sign}\left(\frac{a_{i}}{a_{1}}\right) f_{ai} = \frac{ a_{i} ^{2} \sigma_{i}}{\sum_{j} a_{j} ^{2} \sigma_{j}} \operatorname{sign}\left(\frac{a_{i}}{a_{1}}\right) f_{ai} = \frac{ a_{i} ^{2} \sigma_{i}}{\sum_{j} a_{j} ^{2} \sigma_{j}} \operatorname{sign}\left(\frac{a_{i}}{a_{1}}\right) f_{ai} = \frac{ a_{i} ^{2} \sigma_{i}}{\sum_{j} a_{j} ^{2} \sigma_{j}} \operatorname{sign}\left(\frac{a_{i}}{a_{1}}\right) f_{ai} = \frac{ a_{i} ^{2} \sigma_{i}}{\sum_{j} a_{j} ^{2} \sigma_{j}} \operatorname{sign}\left(\frac{a_{i}}{a_{1}}\right) f_{ai} = \frac{ a_{i} ^{2} \sigma_{i}}{\sum_{j} a_{j} ^{2} \sigma_{j}} \operatorname{sign}\left(\frac{a_{i}}{a_{1}}\right) f_{ai} = \frac{ a_{i} ^{2} \sigma_{i}}{\sum_{j} a_{j} ^{2} \sigma_{j}} \operatorname{sign}\left(\frac{a_{i}}{a_{1}}\right) f_{ai} = \frac{ a_{i} ^{2} \sigma_{i}}{\sum_{j} a_{j} ^{2} \sigma_{j}} \operatorname{sign}\left(\frac{a_{i}}{a_{1}}\right) f_{ai} = \frac{ a_{i} ^{2} \sigma_{i}}{\sum_{j} a_{j} ^{2} \sigma_{j}} \operatorname{sign}\left(\frac{a_{i}}{a_{1}}\right) f_{ai} = \frac{ a_{i} ^{2} \sigma_{i}}{\sum_{j} a_{j} ^{2} \sigma_{j}} \operatorname{sign}\left(\frac{a_{i}}{a_{1}}\right) f_{ai} = \frac{ a_{i} ^{2} \sigma_{i}}{\sum_{j} a_{j} ^{2} \sigma_{j}} \operatorname{sign}\left(\frac{a_{i}}{a_{1}}\right) f_{ai} = \frac{ a_{i} ^{2} \sigma_{i}}{\sum_{j} a_{j} ^{2} \sigma_{j}} \operatorname{sign}\left(\frac{a_{i}}{a_{1}}\right) f_{ai} = \frac{ a_{i} ^{2} \sigma_{i}}{\sum_{j} a_{j} ^{2} \sigma_{j}} \operatorname{sign}\left(\frac{a_{i}}{a_{1}}\right) f_{ai} = \frac{ a_{i} ^{2} \sigma_{i}}{\sum_{j} a_{j} ^{2} \sigma_{j}} \operatorname{sign}\left(\frac{a_{i}}{a_{1}}\right) f_{ai} = \frac{ a_{i} ^{2} \sigma_{i}} \operatorname{sign}\left(\frac{a_{i}}{a_{1}}\right) f_{ai} = \frac{ a_{i} ^{2} \sigma_{i}}{\sum_{j} a_{j} ^{2} \sigma_{j}} \operatorname{sign}\left(\frac{a_{i}}{a_{1}}\right) f_{ai} = \frac{ a_{i} ^{2} \sigma_{i}} \operatorname{sign}\left(\frac{a_{i}}{a_{1}}\right) f_{ai} = \frac{ a_{i} ^{2} \sigma_{i}} \operatorname{sign}\left(\frac{a_{i}}{a_{1}}\right) f_{ai} = \frac{ a_{i} ^{2} \sigma_{i}} \operatorname{sign}\left(\frac{a_{i}}{a_{1}}\right) f_{ai} = a_{$									
\rightarrow conve	enient to measure the e	effective cross sect	ion ratios i	f rather than the					

Oğuz Güzel

$$\mathcal{A}(\text{HVV}) \sim \left[a_1^{\text{VV}} + \frac{\kappa_1^{\text{VV}} p_1^2 + \kappa_2^{\text{VV}} p_2^2}{\left(\Lambda_1^{\text{VV}}\right)^2} \right] m_{\text{V1}}^2 \epsilon_{\text{V1}}^* \epsilon_{\text{V2}}^* + a_2^{\text{VV}} f_{\mu\nu}^{*(1)}$$

anomalous couplings themselves, as most uncertainties cancel in the ratio.

DIS2024: 31st International Workshop on Deep Inelastic Scattering, Grenoble, France

UCLouvain

HVV constraints in $H \rightarrow WW$ final state

Expanding the previous study into anomalous couplings (AC) within the same decay channel.

\rightarrow Warsaw basis

 \rightarrow provide constraints on ACs at the HVV and Hgg vertices with dedicated categories targeting ggF, VBF, and VH

- \rightarrow MELA discriminant: Output nodes distinguish kinematics between SM and BSM scenarios, and identifying interference between SM and BSM
- \rightarrow Two set of results with fixed or floating POI (parameter of interest) fitting
- $\rightarrow f_{a3}$ corresponds to the HVV vertex
- \rightarrow Significant improvement in sensitivity/analysis coverage compared to full Run 1 analysis

Oğuz Güzel

CMS PAS HIG-22-008

$H \rightarrow \tau \tau$ Analysis

Several EFT vertices are targeted

- \rightarrow VBF production for HVV vertex \Rightarrow constrained using $H \rightarrow \tau \tau$ decay in VBF production
- \rightarrow ggH production for Hgg vertex \Rightarrow constrained in combination of $H \rightarrow \tau \tau$ and $H \rightarrow Z \rightarrow 4l$ (on shell)
- → extracted effective fractional cross section

Oğuz Güzel

UCLouvain

 \rightarrow a combination of neural networks (to separate signal vs bkg) and MELA (to distinguish different signals) discriminants is used

Phys. Rev. D 108, 032013

$H \rightarrow \tau \tau$ Analysis (2)

Access to possible CP-violating effects in **H couplings to fermions** (Hff) in ggH production mode with

- H→ZZ
- $ttH \rightarrow \chi\chi$
- $H \rightarrow \tau \tau$

 \rightarrow combination improves limits on anomalous couplings by around <u>25%</u>

 \rightarrow constraints on c_{gg} and CP-odd \tilde{c}_{gg} operators are performed

Oğuz Güzel

DIS2024: 31st International Workshop on Deep Inelastic Scattering, Grenoble, France

UCLouvain

EFT interpretation with **STXS**

STXS - Simplified Template Cross Sections [link]

maximise the sensitivity & minimize their theory dependence \rightarrow introduce kinematic regions which help isolate BSM effects, subsequently serve as input for EFT interpretations.

$$\sigma_i^{EFT} = \sigma_i^{SM} + \sigma_i^{int} + \sigma_i^{BSM}$$

: the leading term in the EFT expansion ($\propto 1/\Lambda^2$) σ^{int} σ^{BSM} : SM-independent term ($\propto 1/\Lambda^4$)

- a scaling function for each STXS bin i, which parameterises deviations in the cross section in terms of the HEL parameters

$$\mu = 1 + \frac{\sigma^{int}}{\sigma^{SM}} + \frac{\sigma^{BSM}}{\sigma^{SM}}$$

Oğuz Güzel

$\begin{array}{ll} c_A \times 10^4 & c_A = \frac{m_W^2}{g^2} \frac{f_A}{\Lambda^2} & c_A \to \text{H-V interaction, cp-oc} \\ c_G \times 10^5 & c_G = \frac{m_W^2}{g_s^2} \frac{f_G}{\Lambda^2} & c_G \to \text{H-gluon interactions} \\ c_u \times 10 & c_u = -v^2 \frac{f_u}{\Lambda^2} & c_u \to \text{H-up type quark} \\ c_d \times 10 & c_d = -v^2 \frac{f_d}{\Lambda^2} & c_d \to \text{H-down type quarks} \\ c_\ell \times 10 & c_\ell = -v^2 \frac{f_\ell}{\Lambda^2} & c_l \to \text{H-charged leptons} \\ c_{HW} \times 10^2 & c_{HW} = \frac{m_W^2}{2g} \frac{f_{HW}}{\Lambda^2} & c_{HW} \to \text{H-V interactions} \end{array}$	HEL Parameters	Definition	
$\begin{array}{ll} c_G \times 10^5 & c_G = \frac{m_W^2}{g_s^2} \frac{f_G}{\Lambda^2} & c_G \to \text{H-gluon interactions} \\ c_u \times 10 & c_u = -v^2 \frac{f_u}{\Lambda^2} & c_u \to \text{H-up type quark} \\ c_d \times 10 & c_d = -v^2 \frac{f_d}{\Lambda^2} & c_d \to \text{H-down type quarks} \\ c_\ell \times 10 & c_\ell = -v^2 \frac{f_\ell}{\Lambda^2} & c_l \to \text{H-charged leptons} \\ c_{HW} \times 10^2 & c_{HW} = \frac{m_W^2}{2g} \frac{f_{HW}}{\Lambda^2} & c_{HW} \to \text{H-V interactions} \end{array}$	$c_A imes 10^4$	$c_A = \frac{m_W^2}{g'^2} \frac{f_A}{\Lambda^2}$	$c_A \rightarrow$ H-V interaction, cp-od
$\begin{array}{ll} c_{u} \times 10 & c_{u} = -v^{2} \frac{f_{u}}{\Lambda^{2}} & c_{u} \to \text{H-up type quark} \\ c_{d} \times 10 & c_{d} = -v^{2} \frac{f_{d}}{\Lambda^{2}} & c_{d} \to \text{H-down type quarks} \\ c_{\ell} \times 10 & c_{\ell} = -v^{2} \frac{f_{\ell}}{\Lambda^{2}} & c_{l} \to \text{H-charged leptons} \\ c_{HW} \times 10^{2} & c_{HW} = \frac{m_{W}^{2} f_{HW}}{2g \Lambda^{2}} & c_{HW} \to \text{H-V interactions} \end{array}$	$c_G imes 10^5$	$c_G = rac{m_W^2}{g_s^2} rac{f_G}{\Lambda^2}$	$c_G \rightarrow$ H-gluon interactions
$\begin{array}{ll} c_d \times 10 & c_d = -v^2 \frac{f_d}{\Lambda^2} & c_d \to \text{H-down type quarks} \\ c_\ell \times 10 & c_\ell = -v^2 \frac{f_\ell}{\Lambda^2} & c_l \to \text{H-charged leptons} \\ c_{HW} \times 10^2 & c_{HW} = \frac{m_W^2 f_{HW}}{2g \Lambda^2} & c_{HW} \to \text{H-V interactions} \end{array}$	$c_u imes 10$	$c_u = -v^2 \frac{f_u}{\Lambda^2}$	$c_u \rightarrow H$ -up type quark
$\begin{array}{ll} c_{\ell} \times 10 & c_{\ell} = -v^2 \frac{f_{\ell}}{\Lambda^2} & c_{l} \rightarrow \mbox{ H-charged leptons} \\ c_{HW} \times 10^2 & c_{HW} = \frac{m_W^2}{2g} \frac{f_{HW}}{\Lambda^2} & c_{HW} \rightarrow \mbox{ H-V interactions} \end{array}$	$c_d imes 10$	$c_d = -v^2 rac{f_d}{\Lambda^2}$	$c_d \rightarrow H$ -down type quarks
$c_{HW} imes 10^2$ $c_{HW} = \frac{m_W^2}{2g} \frac{f_{HW}}{\Lambda^2}$ $c_{HW} \rightarrow$ H-V interactions	$c_\ell imes 10$	$c_\ell = - v^2 rac{f_\ell}{\Lambda^2}$	$c_l \rightarrow$ H-charged leptons
	$c_{HW} imes 10^2$	$c_{HW} = rac{m_W^2}{2g} rac{f_{HW}}{\Lambda^2}$	$c_{HW} \rightarrow$ H-V interactions
$(c_{WW} - c_B) \times 10^2$ $c_{WW} = \frac{m_W^2}{g} \frac{f_{WW}}{\Lambda^2}$, $c_B = \frac{2m_W^2}{g'} \frac{f_B}{\Lambda^2}$ $c_{WW} - c_B \rightarrow$ H-V, cp-even	$(c_{WW}-c_B) imes 10^2$	$c_{WW}=rac{m_W^2}{g}rac{f_{WW}}{\Lambda^2}$, $c_B=rac{2m_W^2}{g'}rac{f_B}{\Lambda^2}$	$c_{WW} - c_B \rightarrow \text{H-V, cp-even}$

EFT interpretation with STXS - CMS

Oğuz Güzel

UCLouvain

EFT Interpretations in Double Higgs Analyses

HEFT: Multiple benchmark models of coupling strengths and modifiers across the dim-6 \rightarrow maximum distinctions across different benchmarks

 \rightarrow analyses performed by re-weighting signal samples to match each EFT benchmark \rightarrow extract the limit for each of the benchmarks

 \Rightarrow HH \rightarrow bbbb, WWbb, WWyy, Multilepton(WWWW, WW $\tau\tau$, $\tau\tau\tau\tau$)

DIS2024: 31st International Workshop on Deep Inelastic Scattering, Grenoble, France

UCLouvain

*c*₂

0.0

-1.0

0.5

-1.5

-3.0

0.0

0.0

WWbb

new!

0.0

0.0

-0.8

0.0

0.0

0.8

0.2

0.8

.75

.25

c₂ 1.25

9

Conclusions

 \Rightarrow **Precision measurements** are key to search for deviations from the SM

 \Rightarrow CMS has several dedicated measurements for EFT effects in the Higgs sector of **SMEFT** with

- $\rightarrow H \rightarrow WW$
- $\rightarrow H \rightarrow \tau \tau$

and in HEFT with

 \rightarrow Double-Higgs analyses

 \Rightarrow The STXS framework enables the exploration of EFT parameters across different Higgs production modes → EFT effects are parametrised in STXS bins for dedicated sensitivity assuming zero modifications in background shapes or normalisation resulting from EFT effects.

 \Rightarrow CMS and ATLAS are actively collaborating to establish a unified framework encompassing both STXS and SMEFT parametrisation within the LHC EFT Working Group, as discussed during the LHC EFT workshop in December 2022.

Oğuz Güzel

UCLouvain

Oğuz Güzel

BACKUP - Higgs SMEFT

Warsaw Basis [link]

X^3		φ^6 and $\varphi^4 D^2$		$\psi^2 arphi^3$		$(\bar{L}L)(\bar{L}L)$		$(ar{R}R)(ar{R}R)$		$(\bar{L}L)(\bar{R}R)$	
Q_G	$f^{ABC}G^{A u}_{\mu}G^{B ho}_{ u}G^{C\mu}_{ ho}$	Q_{arphi}	$(arphi^\daggerarphi)^3$	Q_{earphi}	$(arphi^\daggerarphi)(ar l_p e_rarphi)$	Q_{ll}	$(ar{l}_p\gamma_\mu l_r)(ar{l}_s\gamma^\mu l_t)$	Q_{ee}	$(ar{e}_p\gamma_\mu e_r)(ar{e}_s\gamma^\mu e_t)$	Q_{le}	$(ar{l}_p\gamma_\mu l_r)(ar{e}_s\gamma^\mu e_t)$
$Q_{\widetilde{G}}$	$f^{ABC} \widetilde{G}^{A u}_{\mu} G^{B ho}_{ u} G^{C\mu}_{ ho}$	$Q_{arphi\square}$	$(arphi^\daggerarphi) \Box (arphi^\daggerarphi)$	Q_{uarphi}	$(arphi^\dagger arphi) (ar q_p u_r \widetilde arphi)$	$Q_{qq}^{\left(1 ight)}$	$(ar{q}_p\gamma_\mu q_r)(ar{q}_s\gamma^\mu q_t)$	Q_{uu}	$(ar{u}_p\gamma_\mu u_r)(ar{u}_s\gamma^\mu u_t)$	Q_{lu}	$(ar{l}_p\gamma_\mu l_r)(ar{u}_s\gamma^\mu u_t)$
Q_W	$\varepsilon^{IJK}W^{I u}_{\mu}W^{J ho}_{ u}W^{K\mu}_{ ho}$	$Q_{arphi D}$	$\left(arphi^{\dagger} D^{\mu} arphi ight)^{\star} \left(arphi^{\dagger} D_{\mu} arphi ight)$	Q_{darphi}	$(arphi^\daggerarphi)(ar q_p d_rarphi)$	$Q_{qq}^{(3)}$	$(ar{q}_p\gamma_\mu au^I q_r)(ar{q}_s\gamma^\mu au^I q_t)$	Q_{dd}	$(ar{d}_p\gamma_\mu d_r)(ar{d}_s\gamma^\mu d_t)$	Q_{ld}	$(ar{l}_p\gamma_\mu l_r)(ar{d}_s\gamma^\mu d_t)$
$Q_{\widetilde{W}}$	$\varepsilon^{IJK}\widetilde{W}^{I u}_{\mu}W^{J ho}_{ u}W^{K\mu}_{ ho}$					$Q_{lq}^{(1)}$	$(ar{l}_p \gamma_\mu l_r) (ar{q}_s \gamma^\mu q_t)$	Q_{eu}	$(ar{e}_p \gamma_\mu e_r) (ar{u}_s \gamma^\mu u_t)$	Q_{qe}	$(ar{q}_p\gamma_\mu q_r)(ar{e}_s\gamma^\mu e_t)$
$X^2 \varphi^2$		$\psi^2 X \varphi$		$\psi^2 \varphi^2 D$		$Q_{lq}^{(3)}$	$(\bar{l}_p \gamma_\mu \tau^I l_r) (\bar{q}_s \gamma^\mu \tau^I q_t)$	Q_{ed}	$(ar{e}_p \gamma_\mu e_r) (ar{d}_s \gamma^\mu d_t)$	$Q_{qu}^{(1)}$	$(ar{q}_p\gamma_\mu q_r)(ar{u}_s\gamma^\mu u_t)$
		0	$(\overline{I} - \mu\nu_{-}) - \overline{I} - \mu\nu_{I}$	$O^{(1)}$	$\frac{\varphi}{\varphi} = \frac{\varphi}{\varphi} = \frac{\varphi}{\varphi}$			$Q_{ud}^{(1)}$	$(ar{u}_p\gamma_\mu u_r)(ar{d}_s\gamma^\mu d_t)$	$Q_{qu}^{(8)}$	$\left (ar{q}_p \gamma_\mu T^A q_r) (ar{u}_s \gamma^\mu T^A u_t) ight $
$Q_{arphi G}$	$\varphi'\varphi G_{\mu\nu}^{\mu\nu}G^{\mu\mu\nu}$	Q_{eW}	$(l_p \sigma^{\mu\nu} e_r) \tau^{\mu} \varphi W_{\mu\nu}$	$Q_{arphi l}$	$(\varphi^{i} i D_{\mu} \varphi)(l_p \gamma^{\mu} l_r) \\ \longleftrightarrow$			$Q_{ud}^{(8)}$	$(\bar{u}_p \gamma_\mu T^A u_r) (\bar{d}_s \gamma^\mu T^A d_t)$	$Q_{qd}^{(1)}$	$(ar{q}_p\gamma_\mu q_r)(ar{d}_s\gamma^\mu d_t)$
$Q_{arphi \widetilde{G}}$	$arphi^\dagger arphi \widetilde{G}^A_{\mu u} G^{A\mu u}$	Q_{eB}	$(ar{l}_p \sigma^{\mu u} e_r) arphi B_{\mu u}$	$\left egin{array}{c} Q^{(3)}_{arphi l} ight $	$(arphi^{\dagger}iD^{I}_{\mu}arphi)(ar{l}_{p} au^{I}\gamma^{\mu}l_{r})$					$Q_{ad}^{(8)}$	$\left (\bar{q}_p \gamma_\mu T^A q_r) (\bar{d}_s \gamma^\mu T^A d_t) \right $
$Q_{arphi W}$	$arphi^\dagger arphi W^I_{\mu u} W^{I\mu u}$	Q_{uG}	$(\bar{q}_p \sigma^{\mu u} T^A u_r) \widetilde{\varphi} G^A_{\mu u}$	$Q_{arphi e}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{e}_{p}\gamma^{\mu}e_{r})$	$(\bar{L}R)$	$(\bar{R}L)$ and $(\bar{L}R)(\bar{L}R)$		B-viol	ating	5
$Q_{arphi \widetilde{W}}$	$arphi^\dagger arphi \widetilde{W}^I_{\mu u} W^{I\mu u}$	Q_{uW}	$(\bar{q}_p \sigma^{\mu u} u_r) \tau^I \widetilde{\varphi} W^I_{\mu u}$	$Q^{(1)}_{arphi q}$	$(arphi^\dagger i \overleftrightarrow{D}_\mu arphi) (ar{q}_p \gamma^\mu q_r)$	Q_{ledq}	$(ar{l}_p^j e_r)(ar{d}_s q_t^j)$	Q_{duq}	$\varepsilon^{lphaeta\gamma}\varepsilon_{jk}\left[(d_p^{lpha})^T ight]$	Cu_r^{β}	$\left[(q_s^{\gamma j})^T C l_t^k \right]$
$Q_{arphi B}$	$arphi^\dagger arphi B_{\mu u} B^{\mu u}$	Q_{uB}	$(ar{q}_p \sigma^{\mu u} u_r) \widetilde{arphi} B_{\mu u}$	$Q^{(3)}_{arphi q}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}^{I}\varphi)(\bar{q}_{p}\tau^{I}\gamma^{\mu}q_{r})$	$Q_{quqd}^{(1)}$	$(ar{q}_p^j u_r) arepsilon_{jk} (ar{q}_s^k d_t)$	Q_{qqu}	$\varepsilon^{lphaeta\gamma}\varepsilon_{jk}\left[(q_p^{lpha j})^{\prime} ight]$	$^{T}Cq_{r}^{eta}$	$\left[(u_s^{\gamma})^T C e_t \right]$
$Q_{\varphi \widetilde{B}}$	$arphi^\dagger arphi \widetilde{B}_{\mu u} B^{\mu u}$	Q_{dG}	$(\bar{q}_p \sigma^{\mu u} T^A d_r) \varphi G^A_{\mu u}$	$Q_{arphi u}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{u}_{p}\gamma^{\mu}u_{r})$	$Q_{quqd}^{(8)}$	$(\bar{q}_p^j T^A u_r) \varepsilon_{jk} (\bar{q}_s^k T^A d_t)$	$Q_{qqq}^{\left(1 ight)}$	$\varepsilon^{lphaeta\gamma}\varepsilon_{jk}\varepsilon_{mn}\left[(q_p^{lpha j} ight]$	$)^T C q$	$\left q_r^{\beta k} \right \left[(q_s^{\gamma m})^T C l_t^n \right]$
$Q_{arphi WB}$	$arphi^\dagger au^I arphi W^I_{\mu u} B^{\mu u}$	Q_{dW}	$(ar{q}_p \sigma^{\mu u} d_r) au^I arphi W^I_{\mu u}$	$Q_{arphi d}$	$(arphi^\dagger i \overleftrightarrow{D}_\mu arphi) (ar{d}_p \gamma^\mu d_r)$	$Q_{lequ}^{(1)}$	$(ar{l}_p^j e_r) arepsilon_{jk} (ar{q}_s^k u_t)$	$Q_{qqq}^{\left(3 ight)}$	$\varepsilon^{lphaeta\gamma}(au^{I}arepsilon)_{jk}(au^{I}arepsilon)_{mn}$	$(q_p^{lpha j})$	${}^{T}Cq_{r}^{\beta k}\Big]\left[(q_{s}^{\gamma m})^{T}Cl_{t}^{n}\right]$
$Q_{arphi \widetilde{W}B}$	$arphi^\dagger au^I arphi \widetilde{W}^I_{\mu u} B^{\mu u}$	Q_{dB}	$(ar{q}_p \sigma^{\mu u} d_r) arphi B_{\mu u}$	$Q_{arphi u d}$	$i(\widetilde{arphi}^{\dagger}D_{\mu}arphi)(ar{u}_{p}\gamma^{\mu}d_{r})$	$Q_{lequ}^{\left(3 ight)}$	$(ar{l}_p^{j}\sigma_{\mu u}e_r)arepsilon_{jk}(ar{q}_s^k\sigma^{\mu u}u_t)$	Q_{duu}	$arepsilon^{lphaeta\gamma}\left[(d_p^lpha)^T ight]$	Cu_r^{β}	$\left[(u_s^{\gamma})^T C e_t\right]$

d=6 operators other than the four-fermion ones

$$\begin{split} f_{a2} &= \frac{|a_2|^2 \sigma_2}{|a_1|^2 \sigma_1 + |a_2|^2 \sigma_2 + |a_3|^2 \sigma_3 + |\kappa_1|^2 \sigma_{\Lambda 1} + |\kappa_1^{Z\gamma}|^2 \sigma_{\Lambda 1}^{Z\gamma}} \, \operatorname{sgn}\left(\frac{a_2}{a_1}\right), \\ f_{\Lambda 1} &= \frac{|\kappa_1|^2 \sigma_{\Lambda 1}}{|a_1|^2 \sigma_1 + |a_2|^2 \sigma_2 + |a_3|^2 \sigma_3 + |\kappa_1|^2 \sigma_{\Lambda 1} + |\kappa_1^{Z\gamma}|^2 \sigma_{\Lambda 1}^{Z\gamma}} \, \operatorname{sgn}\left(\frac{-\kappa_1}{a_1}\right), \\ f_{\Lambda 1}^{Z\gamma} &= \frac{|\kappa_2^{Z\gamma}|^2 \sigma_{\Lambda 1}^{Z\gamma}}{|a_1|^2 \sigma_1 + |a_2|^2 \sigma_2 + |a_3|^2 \sigma_3 + |\kappa_1|^2 \sigma_{\Lambda 1} + |\kappa_1^{Z\gamma}|^2 \sigma_{\Lambda 1}^{Z\gamma}} \, \operatorname{sgn}\left(\frac{-\kappa_2^{Z\gamma}}{a_1}\right), \end{split}$$

cross section fractions

Oğuz Güzel

DIS2024: 31st International Workshop on Deep Inelastic Scattering, Grenoble, France

UCLouvain

C

four-fermion operators

Coefficient	Operator	Example process
C _{HDD}	$\left(H^{\dagger}D^{\mu}H ight)^{*}\left(H^{\dagger}D_{\mu}H ight)$	$\begin{array}{c} q \xrightarrow{Z \leq } q \\ Z \xrightarrow{Q + \cdots + H} \\ q \xrightarrow{Z \leq } q \end{array}$
с _{НG}	$H^{\dagger}HG^{A}_{\mu u}G^{A\mu u}$	^g g (С Н
c _{HB}	$H^{\dagger}HB_{\mu u}B^{\mu u}$	$\begin{array}{c} q \xrightarrow{\qquad q \\ Z \xrightarrow{\leq} \cdots H \\ q \xrightarrow{\qquad Z \xrightarrow{\leq} q \end{array}} q$
c _{HW}	$H^{\dagger}HW^{I}_{\mu u}W^{I\mu u}$	$\begin{array}{c} q \qquad \qquad$
c _{HWB}	$H^\dagger au^I H W^I_{\mu u} B^{\mu u}$	$\begin{array}{c} q \xrightarrow{\gamma \leq} q \\ \gamma \leq & H \\ q \xrightarrow{Z \leq} q \end{array}$
C _{eH}	$(H^{\dagger}H)(\bar{l}_{p}e_{r}H)$	н<{ℓ ℓ
$c_{Hl}^{\scriptscriptstyle (1)}$	$(H^\dagger i\overleftrightarrow{D}_\mu H)(\bar{l}_p\gamma^\mu l_r)$	$q \xrightarrow{Z} \stackrel{\ell}{\underset{H}{\swarrow}} $
$c_{Hl}^{\scriptscriptstyle (3)}$	$(H^{\dagger}i\overleftrightarrow{D}_{\mu}^{I}H)(\bar{l}_{p}\tau^{I}\gamma^{\mu}l_{r})$	$q \xrightarrow{W} _{\ell}^{v}$
c _{He}	$(H^\dagger i\overleftrightarrow{D}_\mu H)(\bar{e}_p\gamma^\mu e_r)$	
$c_{Hq}^{\scriptscriptstyle (1)}$	$(H^\dagger i \overleftrightarrow{D}_\mu H) (\bar{q}_p \gamma^\mu q_r)$	$q \xrightarrow{Z}_{\ell} \ell$ $q \xrightarrow{Z}_{\ell} \ell$
$c_{Hq}^{\scriptscriptstyle (3)}$	$(H^\dagger i \overleftrightarrow{D}^I_\mu H) (\bar{q}_p \tau^I \gamma^\mu q_r)$	$q \xrightarrow{W \\ v \\ q} \xrightarrow{W \\ v \\ H}$
c _{Hu}	$(H^\dagger i\overleftrightarrow D_\mu H)(\bar u_p\gamma^\mu u_r)$	$u \xrightarrow{Z} \ell \ell$ $u \xrightarrow{Z} H$
C _{Hd}	$(H^\dagger i \overleftrightarrow{D}_\mu H) (\bar{d}_p \gamma^\mu d_r)$	$d \xrightarrow{Z} \ell_{\ell}$

Definition of the most relevant EFT operators impacting the Higgs in SMEFT

BACKUP - HEFT

<u>CMS-PAS-HIG-21-014</u>

Benchmark	κ_{λ}	κ_t	c_2	c_g	c_{2g}
SM	1.0	1.0	0.0	0.0	0.0
1	7.5	1.0	-1.0	0.0	0.0
2	1.0	1.0	0.5	-0.8	0.6
3	1.0	1.0	-1.5	0.0	-0.8
4	-3.5	1.5	-3.0	0.0	0.0
5	1.0	1.0	0.0	0.8	-1
6	2.4	1.0	0.0	0.2	-0.2
7	5.0	1.0	0.0	0.2	-0.2
8	15.0	1.0	0.0	-1	1
9	1.0	1.0	1.0	-0.6	0.6
10	10.0	1.5	-1.0	0.0	0.0
11	2.4	1.0	0.0	1	-1
12	15.0	1.0	1.0	0.0	0.0
8a	1.0	1.0	0.5	$\frac{0.8}{3}$	0.0
1b	3.94	0.94	$\frac{-1}{3}$	0.75	-1
2b	6.84	0.61	$\frac{1}{3}$	0.0	1.0
3b	2.21	1.05	$\frac{-1}{3}$	0.75	-1.5
4b	2.79	0.61	$\frac{1}{3}$	-0.75	-0.5
5b	3.95	1.17	$\frac{-1}{3}$	0.25	1.5
6b	5.68	0.83	$\frac{1}{3}$	-0.75	-1.0
7b	-0.10	0.94	1.0	0.25	0.5

Oğuz Güzel

DIS2024: 31st International Workshop on Deep Inelastic Scattering, Grenoble, France

UCLouvain

13

