

Searches for Dark Matter with CMS

Deep Inelastic Scattering (DIS) 8 - 12 Apr 2024, Grenoble

> Jesús Vizán on behalf of the CMS Collaboration Universidad de Cantabria – Instituto de Física de Cantabria

Dark Matter

DM inferred from astrophysical observations

- ▲ Galaxy rotation curves
- Strong gravitational lensing
- Bullet cluster

100 V (km/s) 50 10 20 30 40 50 10 20 30 40 50 R (× 1000 ly) Hunt for DM with complementary approaches: Collider searches, direct, and indirect detection

At LHC, many BSM models considered in order to cover as much DM theory as possible [see CMS briefing on Dark Matter]

At LHC, many BSM models considered in order to cover as much DM theory as possible [see CMS briefing on Dark Matter]

Simplified Models / Dark Sectors

Dark Higgs Spin-0 Dark portal Higgs 125 Axial-vector Fermion Spinportal portal Simplified dark sectors Neutrino portal Dark sector models in CMS searches

Involve a single mediator

- spin 1 portal : Vector, Axial-vector, Dark
 Photon
- Spin 0: Scalar,
 Pseudoscalar, Dark
 Higgs, ...

0 ...

At LHC, many BSM models considered in order to cover as much DM theory as possible [see CMS briefing on Dark Matter]

Extended Dark sectors

More complex dynamics of Dark Sector

Supersymmetry,
 Hidden Valleys,
 2HDM+a, Inelastic Dark
 Matter

At LHC, many BSM models considered in order to cover as much DM theory as possible [see CMS briefing on Dark Matter]

Experimental challenges and a wide variety of experimental signatures

- Missing Transverse Energy (MET) + X
- ▲ **Displaced** particles
- Semivisible jets,
 Emerging jets, Soft
 Unclustered Energy
 Patterns (SUEPS)
- Other unconventional signatures

At LHC, many BSM models considered in order to cover as much DM theory as possible [see CMS briefing on Dark Matter]

This talk will briefly overview:

- ▲ New Summary Plots (<u>full list in this link</u>)
- Some recent searches that will serve as an example (impossible to cover everything)

DM + t/tt

NEW:

DM + t/tt

NEW: CMS-PAS-EXO-22-014

95% CL limits on production cross section vs mass of scalar or pseudoscalar

▲ Exclusion for benchmark model up to ~400 GeV

Scalar / Pseudoscalar Summary Production vs mediator mass from DM + {j/V(qq); Z(II); tt} analyses

Z'_{V/A} mediator: dijet resonance and monojet

Consider spin 1 mediator: **vector** (Z_V) or **axial vector** (Z_A) Limits on universal quark coupling g_q

Z'_{V/A} mediator: comparison with Direct Detection

Consider spin 1 mediator: vector (Z_V) or axial vector (Z_A)
 90% CL Limits on scattering DM-Nucleon cross section
 CMS Preliminary Vector

Dark photon with dimuon resonances

Dark photon A':

- spin1 mediator
- mixing with SM photon ^a
- Minimal dark photon model

NEW: Enriching the physics program of the CMS experiment via data scouting and data parking <u>2403.16134</u>

- Low mass resonances with scouting triggers
- 90% CL limits on squared mixing coefficient vs dark photon mass

A'

 u^+

Dark Higgs in WW

Introduces vector boson Z' and a new physical Higgs boson s

DM + bb (non-resonant) No significant excess. 95% CL limits:

▲ m_a up to ~260 GeV \blacktriangle m_a - tanβ plane **Better sensitivity at high tan** β ($g_{b\bar{b}A}$, $g_{b\bar{b}a}$ couplings are $tan\beta$ -enhanced) 10/04/2024

NEW:

CMS-PAS-SUS-23-008

Dark QCD

Non-minimal Dark Sectors may have multiple new particles and interactions decoupled from SM (Hidden Valley theories)

Dark QCD: strongly coupled dark sector

- \land N_f^{dark} flavors of dark quarks
- Accessible via collider at high energy corresponding to the mass of the mediator between DS and SM
- Numerous phenomenological signatures depending on parameters of model

Distinctive signatures such as semivisible jets, emerging jets or
 SUEPs (Soft Unclustered Energy Patterns)

Semivisible jets

Dark quarks could shower and hadronize forming dark jets

- Stable dark hadrons become DM candidates
- Unstable dark hadrons decay to SM

Characterized by r_{inv}

 Fraction of energy carried by invisible DM particles

95% CL limits on mass of mediator vs r_{inv} (comparison with dijet and monojet analyses)

10/04/2024

Jesus Vizan

20

Parton shower and hadronization on dark sector shorter timescale than dark meson decay to SM particles

Long-lived dark mesons: Emerging jets

Analysis signature

 2 emerging jets with multiple displaced tracks (at various distances depending on dark meson lifetimes)

- ▲ 2 SM jets
- 2 Emerging jet tagging approaches
 - Selection on jet-level variables based on track displacement (model agnostic)
 - Graph NN trained on specific signal model

Model depends on mass and lifetime of dark pion, π_{dark} , and the mass of the scalar mediator, X_{dark}

95% CL limit on cross section for mass of dark pion = 10 GeV

NEW:

2403.01556

SUEP

5

Instead of collimated jets, Dark showers can result in a large multiplicity of spherically- distributed low-momentum charged particles

NEW: <u>2403.05311</u> Submitted to PRL

SM

Summary

Explored a wide-variety of DM models making use of the full Run 2 CMS dataset Complementary approaches using simplified and extended dark sector models Considered various mediators and broad modelparameter phase space From simpler MET + X signature to very unconventional signatures

Back-up

Z'_{V/A} mediator: comparison with Direct Detection 90% CL Limits on scattering DM-Nucleon cross section

DM + bb (non-resonant)

- Particle content:
 - Two scalars: h (SM Higgs), H
 - Pair of charged scalars: H[±]
 - Two pseudoscalars: A, a
 - Dirac fermion DM

Benchmark Parameters

Parameters

Mixing angles Between h and H : α Between A and a : θ VEV ratio of Higgs Doublet: tan β

NEW:

CMS-PAS-SUS-23-008

Quartic couplings

 $\lambda_3, \lambda_{P1}, \lambda_{P2}$

Masses

$$\begin{split} \mathbf{m}_{\mathrm{H}} &= \mathbf{m}_{\mathrm{H}^{\pm}} = \mathbf{m}_{\mathrm{A}} = 600 \,\mathrm{GeV}, \\ \lambda_{3} &= \lambda_{\mathrm{P1}} = \lambda_{\mathrm{P2}} = 3, \,\mathbf{m}_{\chi} = 1 \,\mathrm{GeV}, \\ \cos(\beta - \alpha) &= 0, \, \tan\beta < 50 \end{split}$$

$$m_{\rm H} = 125 \; {
m GeV}$$

 $m_{\rm H}, m_{\rm H^{\pm}}, m_{\rm A}, m_{\rm a}, m_{\chi}$

Semivisible jets

Resonant Production

 $\begin{array}{l} \mbox{Preselection requirements} \\ p_{\rm T}({\rm J}_{1,2}) > 200 \, {\rm GeV}, \ \eta({\rm J}_{1,2}) < 2.4 \\ R_{\rm T} > 0.15 \\ \Delta \eta({\rm J}_1, {\rm J}_2) < 1.5 \\ m_{\rm T} > 1.5 \, {\rm TeV} \\ N_{\mu} = 0 \\ N_{\rm e} = 0 \\ p_{\rm T}^{\rm miss} \mbox{ filters} \\ \Delta R({\rm j}_{1,2}, c_{\rm nonfunctional}) > 0.1 \\ \end{array}$

 $\begin{array}{r} \text{veto } f_{\gamma}(\mathbf{j}_{1}) > 0.7 \ \& \ p_{\mathrm{T}}(\mathbf{j}_{1}) > 1.0 \ \mathrm{TeV} \\ \text{veto } -3.05 < \eta_{\mathrm{j}} < -1.35 \ \& \ -1.62 < \phi_{\mathrm{j}} < -0.82 \ * \\ \Delta \phi_{\mathrm{min}} < 0.8 \end{array}$

Model parameters

0.15<R_T<0.25 R_T>0.25

 $R_{T=} \not \! E_T / M_T$

 $N_c^{dark} = 2, N_f^{dark} = 2$

 $m_{Z'}, m_{dark}, \alpha_{dark}, and r_{inv}$.

Fit mT(JJ, MET) distribution in each signal region

$$g(x) = \exp(p_1 x) x^{p_2[1+p_3\ln(x)]}$$

 $x=m_{\rm T}/\!\sqrt{s}$ (with $\sqrt{s}=13\,{\rm TeV})$ and $p_1,\,p_2,\,{\rm and}~p_3$ are free parameters in the fit

Semivisible jets

SVJ Tagger (BDT)

Trained used a combination of signal models against a combination of tt and QCD

Cut-based

BDT