From short to long-distance QCD with archived ALEPH e+e- at LEP

Gian Michele Innocenti Massachusetts Institute of Technology

In collaboration with Yen-Jie Lee (MIT), Yu-Chen Chen (MIT), Yi Chen (Vanderbilt U.), Anthony Badea (U. Chicago), Austin Baty (UIC), Marcello Maggi (INFN Bari), Christopher McGinn (MIT), Michael Peters (MIT), Tzu-An Sheng (MIT), Jesse Thaler (MIT)

e+e- collisions as a QCD laboratory

\rightarrow e⁺e⁻ optimal conditions for "in-vacuum" QCD measurements

"Elementary" initial conditions:

- e⁺e⁻ as point-like colorless colliding systems
- no gluonic initial state radiation
- no dependence on PDFs

Limited background sources:

- negligible contamination from soft QCD underlying
- no pileup

"In-vacuum" final state evolution

e+e- as an "elementary" reference for hadronic collisions

e⁺e⁻ optimal conditions for "in-vacuum" QCD measurements

e+e-

"Elementary" initial conditions:

- e⁺e⁻ as point-like colorless colliding systems
- no gluonic initial state radiation
- no dependence on PDFs

Limited background sources:

- negligible contamination from soft QCD underlying
- no pileup

"In-vacuum" final state evolution

Best "in-vacuum" reference for pp, pnucleus (pA), and nucleus-nucleus (AA)

- strong color fields
- large underlying event background
- dependence on PDFs and nPDFs
- initial-state anisotropy
- final-state interactions

• . . .

nucleus-nucleus

Revisiting QCD phenomenology with ALEPH e+e- open data

ALEPH Collaboration, CERN-EP-90-25

- LEP1 e⁺e⁻ data at Z pole (91 GeV) taken between 1992-1995
- LEP2 e⁺e⁻ data above Z pole up 209 GeV

G.M. Innocenti (MIT), DIS 2024, From short to long-distance QCD with archived ALEPH e+e- at LEP

ALEPH data

- Re-analyzed an MIT Open Data format
- Fully-simulated ALEPH archived Pythia6 MC (for corrections and the comparison baseline)

Acknowledgement: we would like to thank Roberto Tenchini and Guenther Dissertori from the ALEPH collaboration for the useful comments and suggestions on the use of ALEPH data

LEP1 (1992–1995) & LEP2 (1996–2000) datasets

hadronic data at high-multiplicity dominated by $e^+e^- \rightarrow W^+W^- \rightarrow 4f$

Ridge in AA: signature for a strongly-interacting medium

Near-side long-range (large $\Delta \eta$) correlation ("ridge"): \rightarrow collective effect in a strongly-interacting "liquid" medium

Emergence of the ridge in small collisions systems (pp, pA)

Can we obtain some insights from the "simplest" collision system? \rightarrow Lets look at e⁺e⁻ data!

- Color-reconnection mechanisms? MPI?
- Final state effect due to mini-QGP?

Two-particle correlation in e+e-: reference axis?

Random orientation of the system

• Thrust reference axis: sensitive to medium expanding perpendicular to the outgoing final-state axis • In the thrust-axis reference frame article production distribution ($dN/d\eta$) is analogous to pp, AA collisions

Two-particle correlation with ALEPH LEP1 data

A. Badea, Y.J. Lee et al. Phys. Rev. Lett. 123, 212002 (2019)

G.M. Innocenti (MIT), DIS 2024, From short to long-distance QCD with archived ALEPH e+e- at LEP

What will happen at higher energies and higher multiplicities \rightarrow LEP2 data

Two-particle correlation in LEP2: multiplicity-integrated result

 \rightarrow hadronic data dominated by $e^+e^- \rightarrow q\bar{q}$ events also at LEP2 energies

In the multiplicity-integrated analysis:

 \rightarrow no evidence for long-range near-side correlations

 \rightarrow trend well described by MC calculations

A. Badea, Y.J. Lee et al. Phys. Rev. Lett. 123, 212002 (2019)

G.M. Innocenti (MIT), DIS 2024, From short to long-distance QCD with archived ALEPH e+e- at LEP

Y-.C. Chen et al., arXiv.2312.05084

Two-particle correlation in LEP2: $N_{ch} > 50$

 \rightarrow hadronic data dominated by $e^+e^- \rightarrow W^+W^- \rightarrow 4f$ events also at LEP2 energies

- At high multiplicity, a long-range near-side "structure" shows up 0
- Data also feature a narrower away-side spectrum at $\Delta \phi \sim \pi$
 - \rightarrow qualitatively the same type of signal that we have measured in pp, pPb, PbPb

Associated yield vs N_{ch} to quantify the ridge magnitude

At low multiplicity (<40), Belle, LEP1 and LEP2 show less associated yields than ALICE protonproton results

G.M. Innocenti (MIT), DIS 2024, From short to long-distance QCD with archived ALEPH e+e- at LEP

At high multiplicity, LEP2 data shows a non-zero yield (very large uncertainties)

Y-.C. Chen et al., arXiv.2312.05084

Associated yield vs N_{ch} to quantify the ridge magnitude

Possible interpretations (not yet conclusive):

- ridge formed without initial-state anisotropies due to the presence of more complex color string configurations?
- non-negligible final-state interactions in e+e-?

\rightarrow push for more accurate measurements (e.g. in UPCs or eA collisions at the EIC) and further theory development!

Y-.C. Chen et al., <u>arXiv.2312.05084</u>

More jet measurements in e+e- collisions?

 \rightarrow significant progress has been made on jet definitions and jet clustering algorithms since LEP time!

Physics interest for measuring modern observables in e+e- data :

- \rightarrow validate the predictions of modern generators in the ultra-clear e⁺e⁻ environment
- \rightarrow "cure" some of the discrepancies observed at the LHC in the simple in e⁺e⁻ environment
- \rightarrow opportunity to design new techniques that profit from the favorable theoretical/experimental conditions of e⁺e⁻

Highlight: energy sharing z_G in e⁺e⁻ from LEP 1

At low E: good agreement with MCs

G.M. Innocenti (MIT), DIS 2024, From short to long-distance QCD with archived ALEPH e+e- at LEP

At high E: evidence for some MC-data discrepancies \rightarrow qualitatively similar to the discrepancies observed in data-MC comparisons for pp

Conclusions and outlook

Unique features of e+e- collisions (point-like initial state, low background, in-vacuum final state..) \rightarrow have motivated new studies in the perturbative and non-perturbative regime

New insights into collective phenomena in "small" systems

 \rightarrow can we see indications of hadronization changes vs multiplicity?

 \rightarrow can we map the transition between short and long-distance QCD with energy-energy correlators? \rightarrow Building the tools for future measurements in UPC at the LHC, the EIC and the FCC

In-vacuum benchmark for detailed characterization of the parton shower evolution

Conclusions and outlook

Unique features of e+e- collisions (point-like initial state, low background, in-vacuum final state..) \rightarrow have motivated new studies in the perturbative and non-perturbative regime

New insights into collective phenomena in "small" systems

Multiplicity

Work is ongoing to extend this effort to new observables and phenomena

 \rightarrow can we see indications of hadronization changes vs multiplicity?

 \rightarrow can we map the transition between short and long-distance QCD with energy-energy correlators? \rightarrow Building the tools for future measurements in UPC at the LHC, the EIC and the FCC

In-vacuum benchmark for detailed characterization of the parton shower evolution

Thank you for your attention!

17

BACKUP SLIDES

Highlight: e+e- LEP1 data and modern event generators

G.M. Innocenti (MIT), DIS 2024, From short to long-distance QCD with archived ALEPH e+e- at LEP

MITHIG-MOD-21-001 arXiv:2111.09914 JHEP 06 (2022) 008

Jet energy: closest observable to the jet spectra analyses in pp collisions

The shape of the peak around 43 GeV ($Z \rightarrow q\bar{q}$) well described by by the anti- k_T algorithm with R=0.4

Generators capture the general features of the distributions but overpredict the spectra at low jet E

Yes ridge

Credit: Yen-Jie Lee

High jet E (mainly quark jets):

- Peak at smaller R_G value
- Generators give a better description of the data

- Low jet E (mainly from soft emissions and combinatorial):
 - Peak at larger R_G value as one would expect
 - SHERPA gives a better description of the data
 - **PYTHIA 6, PYTHIA 8, HERWIG, and** PYQUEN overpredict the R_G

The Highest Multiplicity Events in Archived LEP2 Data

Associated Yield as a Function of Multiplicity

- Very tight upper limit set with Belle, LEP1 and LEP2 data set at low multiplicity (<40), lower than ALICE pp results
- Indication of an increasing trend at high multiplicity in LEP2 data
- Non-zero central value reported at the highest multiplicity bin with large statistical uncertainty

arXiv:2312.05084

Analysis note: MITHIG-MOD-NOTE-23-011 (arXiv:2309.09874)

- \bullet
- Similar increasing trend in e⁺e⁻ and pp data as a function of p_T

G.M. Innocenti (MIT), DIS 2024, From short to long-distance QCD with archived ALEPH e+e- at LEP

arXiv:2312.05084

Two-String Configuration Study with AMPT

PRC 97 (2018) 2, 024909

Fraction of Partons that Scatter

Hadronic Event Selection

Track Selection: \bullet

- Particle Flow Candidate 0, 1, 2
- Number of TPC hits for a charged tracks >= 4
- |d0| < 2 cm \bullet
- |z0|< 10 cm
- |cosθ|<0.94
- $p_T > 0.2 \text{ GeV}$ (transverse momentum with respect to beam axis)
- N_{TPC} >=4
- x²/ndf < 1000.

Neutral Hadron Selection:

- Particle Flow Candidate 4, 5 (ECAL / HCAL object)
- E> 0.4 GeV
- |cosθ|<0.98

Event Selection: \bullet

- Number of good charged particles >= 5 (including charged hadrons and leptons)
- Number of good ch+neu. Particles >= 13
- $E_{charged} > 15 \text{ GeV}$
- $|\cos(\theta_{\text{sphericity}})| < 0.82$

Jet reconstruction (anti k_T with R=0.4)

$$d_{ij} = \min(E_i^{-2}, |E_j^{-2}|) \frac{1 - \cos \theta_{ij}}{1 - \cos R}$$
$$d_{iR} = E_i^{-2},$$

Extracted v_n vs. Charged Particle p_T Low multiplicity 10 ≤N_{track} < 20

Good agreement between data and MC

G.M. Innocenti (MIT), DIS 2024, From short to long-distance QCD with archived ALEPH e+e- at LEP

High multiplicity N_{track}≥50

Larger v_2 and v_3 magnitudes than MC

Extracted v_n vs. Charged Particle p_T Photoproduction

• ZEUS search in lab frame: No significant ridge-like signal in both photoproduction and DIS data with $N_{ch} > 20$

> ZEUS DIS JHEP 04 (2020) 070 ZEUS Photoproduction JHEP 12 (2021) 102

DIS

DIS

 No significant ridge-like signal in H1 search in Hadronic CM Frame (Up to $N_{ch} = 20$)

Definition of EEC in e+e-

• No Jet reconstruction, Full event

$$\frac{1}{N_{event}} \frac{d(\sum E_i E_j / E^2)}{d\theta_L}$$

- Sum over pairs of charged particles in the event
- Normalize by total energy E in the event (91.2 GeV by definition in LEP1)
- Θ_L is the opening angle (in rad.) as opposed to the R_L or x_L which is eta-phi
- Average over all events considered
- Similar for 3-particle or higher correlators
 - For N-particle correlators, Θ_{L} is defined as the largest angle of the pairs

EEC in e+e-: Extending to back-to-back region

- Back-to-back (Sudakov Limit) \bullet
 - At Θ ~ π
 - Study correlations of the full set of particles, not just those within jets
- This variable cannot be explored with jet-substructure techniques
 - Presents a unique opportunity in e⁺e⁻!
- Important ingredient into theory calculations to control non-perturbative effect \bullet
- Similar to the collinear limit, this can also be used to study confinement transition and strong coupling constant •

Two-particle EEC (E2C) from archived MC

• Presented in double-log-x scale to focus on the tail region

E2C from MC Generators

Dominant structures

- Dijet back to back
- Left peak is what people are familiar with
- No reason to be symmetric a priori
- Left peak (collinear)
 - Parton shower region
 - Different shower, different slope
 - Hadronization region
 - MCs roughly parallel to each other
 - Peak location
 - Correspond to 45 GeV scale
 - Different MC are a bit different
- Right peak (back-to-back)
 - Also, a peak and transition between Sudakov limit and parton shower

3-particle EEC (E3C) from MC in e+e-

- Observe non-trivial slope in the hadronization region
 - Away-side ($\Theta_L > \pi/2$) region: roughly flat
 - A small structure around $2\pi/3$:
 - Reject **3-jet** event removes this particular structure
 - Further increase beyond 2π/3: di-jet
- MCs agree with each other within 5-10%
 - Except for the small angle region of **SHERPA**

Detector Effects based on Archived ALEPH MC

- Will we be able to measure the correlators? Yes!
- Generator- and detector-level results are similar over a large phase space

