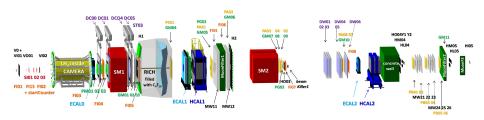
Measurement of azimuthal modulations in SIDIS off proton target at COMPASS

Vendula Benešová

Faculty of Mathematics and Physics Charles University, Prague, Czechia On behalf of the COMPASS collaboration Financed by: Charles University grant PRIMUS/22/SCI/017

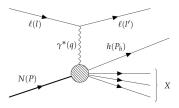
11. 04. 2024

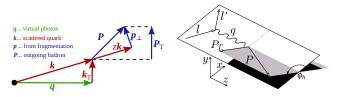
31st International Workshop on Deep Inelastic Scattering Maison MINATEC, Grenoble, France



FACULTY OF MATHEMATICS AND PHYSICS Charles University

COMPASS experiment at CERN


- COMPASS (COmmon Muon and Proton Apparatus for Structure and Spectroscopy) is a fixed target experiment at CERN
- 20 years of data measurement between 2002–2022 dedicated to spectroscopy and nucleon structure
- 2016–2017 setup: liquid hydrogen target, 160 GeV/c longitudinally polarized μ^{\pm} beam
 - Deeply Virtual Compton Scattering (DVCS)
 - Hard Exclusive Meson Production (HEMP)
 - Semi-Inclusive Deeply Inelastic Scattering (SIDIS)


Unpolarized SIDIS

• SIDIS:

$$l(l) + N(P_N) \rightarrow l'(l') + h(P) + X$$

- Hadron $P_{\rm T}$ originates from quark $k_{\rm T}$ and fragmentation $\to {\rm TMDs}$
- $P_{\rm T}$ and azimuthal angle ϕ_h are defined in γ^* -nucleon system (GNS):

Vendula Benešová 3 / 16 11. 04. 2024, Grenoble

Unpolarized SIDIS – structure functions

• Unpolarized SIDIS cross-section [A. Bacchetta et al., JHEP 0702 (2007)]

$$\frac{\mathrm{d}^{5}\sigma}{\mathrm{d}x\mathrm{d}y\mathrm{d}z\mathrm{d}\phi_{h}P_{\mathrm{T}}^{2}} = \frac{2\pi\alpha^{2}}{xyQ^{2}}\frac{y^{2}}{2(1-\varepsilon)}(1+\frac{\gamma^{2}}{2x})\Big[F_{\mathrm{UU},\mathrm{T}} + \varepsilon F_{\mathrm{UU},\mathrm{L}} + \sqrt{2\varepsilon(1+\varepsilon)}F_{\mathrm{UU}}^{\cos\phi_{h}}\cos\phi_{h} + \varepsilon F_{\mathrm{UU}}^{\cos2\phi_{h}}\cos2\phi_{h} + \lambda\sqrt{2\varepsilon(1+\varepsilon)}F_{\mathrm{LU}}^{\sin\phi_{h}}\sin\phi_{h}\Big]$$

• Structure functions $F_{\rm XU}^{f(\phi_h)}(x,z,P_{\rm T}^2,Q^2)$ interpretation \to weighted convolutions:

$$\mathscr{C}[wfD] = x \sum_q e_q^2 \int \mathrm{d}^2k_\mathrm{T} \mathrm{d}^2P_\perp \delta^{(2)}(zk_\mathrm{T} + P_\perp - P_\mathrm{T}) w(k_\mathrm{T}, P_\perp) f^q(x, k_\mathrm{T}, Q^2) D^{q \to h}(z, P_\perp, Q^2)$$

- leading twist description of unpolarized SIDIS:
- 2 TMD-PDFs $f^q(x, k_T, Q^2)$:
 - unpolarized f_1
 - Boer-Mulders h_1^{\perp}

- 2 TMD-FFs $D^{q\to h}(z, P_{\perp}, Q^2)$:
 - unpolarized D_1
 - Collins H_1^{\perp}

Unpolarized SIDIS – structure functions

• Unpolarized SIDIS cross-section [A. Bacchetta et al., JHEP 0702 (2007)]

$$\frac{\mathrm{d}^{5}\sigma}{\mathrm{d}x\mathrm{d}y\mathrm{d}z\mathrm{d}\phi_{h}P_{\mathrm{T}}^{2}} = \frac{2\pi\alpha^{2}}{xyQ^{2}}\frac{y^{2}}{2(1-\varepsilon)}(1+\frac{\gamma^{2}}{2x})\Big[F_{\mathrm{UU},\mathrm{T}} + \varepsilon F_{\mathrm{UU},\mathrm{L}} + \sqrt{2\varepsilon(1+\varepsilon)}F_{\mathrm{UU}}^{\cos\phi_{h}}\cos\phi_{h} + \varepsilon F_{\mathrm{UU}}^{\cos2\phi_{h}}\cos2\phi_{h} + \lambda\sqrt{2\varepsilon(1+\varepsilon)}F_{\mathrm{LU}}^{\sin\phi_{h}}\sin\phi_{h}\Big]$$

• Up to order $\frac{1}{Q}$:

$$\begin{split} F_{\mathrm{UU},\mathrm{T}} &= \mathscr{C}[f_1D_1] \qquad F_{\mathrm{UU},\mathrm{L}} = 0 \qquad F_{\mathrm{LU}}^{\sin\phi_h} = 0 + \dots \\ F_{\mathrm{UU}}^{\cos2\phi_h} &= \mathscr{C}\left[\frac{2(\hat{\pmb{h}}\cdot\pmb{k}_{\mathrm{T}})(\hat{\pmb{h}}\cdot\pmb{P}_{\perp}) - (\pmb{k}_{\mathrm{T}}\cdot\pmb{P}_{\perp})}{zMM_h}h_1^{\perp}H_1^{\perp}\right] \qquad \leftarrow \hat{\pmb{h}} = \frac{\pmb{P}_{\mathrm{T}}}{|\pmb{P}_{\mathrm{T}}|} \\ F_{\mathrm{UU}}^{\cos\phi_h} &= \frac{2M}{Q}\mathscr{C}\left[\underbrace{-\frac{(\hat{\pmb{h}}\cdot\pmb{k}_{\mathrm{T}})}{M}f_1D_1} + \underbrace{k_{\mathrm{T}}^2(\hat{\pmb{h}}\cdot\pmb{P}_{\perp})}_{zM^2M_h}h_1^{\perp}H_1^{\perp} + \dots\right] \qquad \leftarrow \text{ $^{\mathrm{W.W. type}}$ approximation} \end{split}$$

Vendula Benešová 4 / 16 11. 04. 2024, Grenoble

Boer-Mulders effect

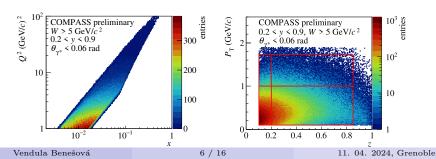
Unpolarized SIDIS – azimuthal asymmetries

• Unpolarized SIDIS cross-section:

$$\begin{split} &\frac{\text{d}^5\sigma}{\text{d}x\text{d}y\text{d}z\text{d}\phi_h\text{d}P_\text{T}} = \\ &p_0(1+\varepsilon_1A_\text{UU}^{\cos\phi_h}\cos\phi_h+\varepsilon_2A_\text{UU}^{\cos2\phi_h}\cos2\phi_h+\lambda\varepsilon_3A_\text{LU}^{\sin\phi_h}\sin\phi_h) \end{split}$$

- Azimuthal asymmetries are obtained by fitting the cross-section on the measured ϕ_h distributions
- Asymmetries are directly connected to the structure functions:

$$A_{\rm XU}^{f(\phi_h)}(x, z, P_{\rm T}^2, Q^2) \equiv \frac{F_{\rm XU}^{f(\phi_h)}}{F_{\rm III}} \qquad F_{\rm UU} = F_{\rm UU,T} + F_{\rm UU,L}$$

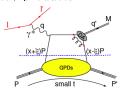

- $\rightarrow A_{\mathrm{UU}}^{\cos\phi_h}$: Cahn effect negative modulation expected
- $\rightarrow A_{\text{III}}^{\cos 2\phi_h}$: Boer–Mulders effect
- $\rightarrow A_{\text{LU}}^{\sin\phi_h}$: higher-twist effects

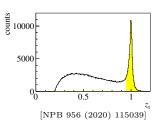
Data sample, kinematic range and binning

- Results of 2016 unpolarized SIDIS previously presented [DIS 2022] [SPIN 2023]
- New: 2x larger data sample, radiative corrections in z, x and P_T bins
- Reasonable acceptance \rightarrow kinematical coverage:

$$\begin{array}{lll} 0.2 < y < 0.9 & 0.003 < x < 0.130 & Q^2 > 1~{\rm GeV}^2/c^2 & \theta_\gamma < 60~{\rm mrad} \\ 0.2 < z < 0.85 & W > 5~{\rm GeV}/c & 0.1~{\rm GeV}/c < P_{\rm T} < 1.0~{\rm GeV}/c \end{array}$$

 \rightarrow enlarged in z down to 0.1 and $P_{\rm T}$ up to 1.73 to include more bins

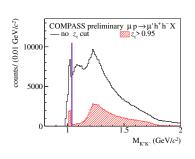


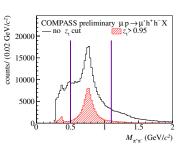

Background treatment

- Background process: HEMP
- only non-negligible contributors: $\rho \to \pi^+\pi^-$ and $\phi \to K^+K^-$
- Exclusive vector mesons (EVM) inherit polarization from γ^*
- \rightarrow large amplitudes of azimuthal modulations for decay products
- In case of hadrons from EVMs:
 - visible hadron pairs
 - both hadrons reconstructed
 - rejected using 'EVM cut':

$$z_{\rm t} = z_{\rm h^+} + z_{\rm h^-} < 0.95$$

- invisible hadrons
 - 1 hadron reconstructed
 - subtracted from ϕ_h distributions using HEPGEN MC \equiv **EVM subtraction**

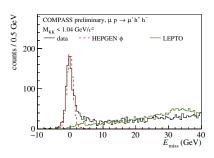


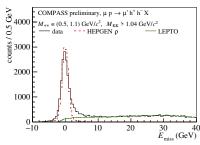

Vendula Benešová 7 / 16 11. 04. 2024, Grenoble

Visible hadron pairs: looking for EVM

• ρ and ϕ mesons are visible in invariant mass distributions of the **visible** hadron pairs:

$$\begin{split} \rho \to \pi^+\pi^- : M_{\mathrm{K}^+\mathrm{K}^-} &\in [1.04,\infty] \ \mathrm{GeV}/c^2 \\ &\quad \text{and} \ M_{\pi^+\pi^-} &\in [0.5,1.1] \ \mathrm{GeV}/c^2 \\ \varphi \to \mathrm{K}^+\mathrm{K}^- : M_{\mathrm{K}^+\mathrm{K}^-} &\in [0,1.04] \ \mathrm{GeV}/c^2 \end{split}$$

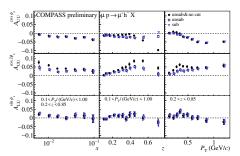


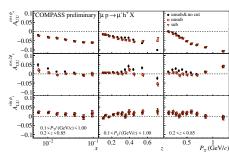

Vendula Benešová 8 / 16 11. 04. 2024, Grenoble

Subtraction of invisible hadrons from EVM decays

• Normalization of HEPGEN ρ and HEPGEN ϕ is estimated using $E_{\rm miss}$ distributions of visible hadron pairs

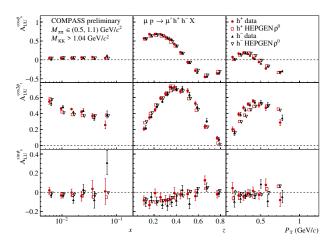
$$E_{\text{miss}} = \frac{M_{\text{X}}^2 - M_{\text{p}}^2}{2M_{\text{p}}}$$
 $M_{\text{X}}^2 = (p + q - P_{\text{h}^+} - P_{\text{h}^-})^2$

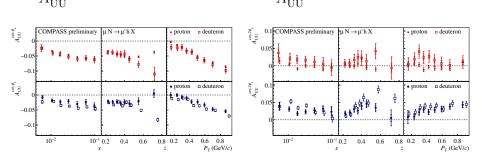

Vendula Benešová 9 / 16 11. 04. 2024, Grenoble


Effect of EVM cut and subtraction

- Background of hadrons from EVM decays has significant impact on the results
- High z, low x and low $P_{\rm T}$ regions are affected the most

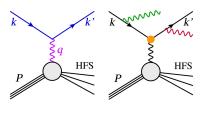
negative hadrons


positive hadrons


Azimuthal asymmetries of visible hadron pairs in data and HEPGEN

• HEPGEN nicely describes modulations in measured data thanks to SDMEs being plugged in [EPJC (2023) 83 924]

Comparison of results on proton and deuteron target


- Results on deuteron target
 - preliminary in $P_{\rm T}$, z and x binning
 - in $P_{\mathrm{T}}:z:x$ binning [NPB 956 (2020) 115039]
- Differences in results on proton (u quark dominant) and deuteron (isoscalar) target
- \rightarrow possible quark flavour dependence of structure functions

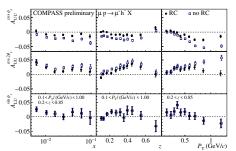
Vendula Benešová 12 / 16 11. 04. 2024, Grenoble

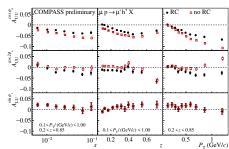
Radiative corrections

- Cross-section is defined at tree level → radiative corrections account for QED radiative effects (RE):
- \rightarrow renormalisation of the vertices
- \rightarrow radiation of photons along the $\mu,$ μ' and virtual photon
- \rightarrow corresponding changes in x, Q^2 and orientation of GNS

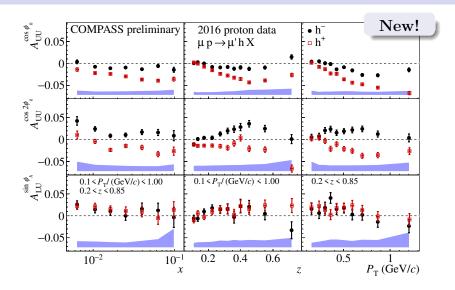
 $[\mathrm{M.\ Arratia\ et\ al.},\ \mathrm{kinematics\ of\ DIS}]$

- impact of RE in hadronic variables (such as ϕ_h) accessed only through simulations
- DJANGOH: modified LEPTO generator with hadronization in JETSET and SOPHIA [K. Charchula et al., DJANGOH]
- applied by dividing fraction RC from ϕ_h distributions bin-by-bin


$$RC(\phi_h) = \frac{N_h^{\text{RE-on}}}{N_h^{\text{RE-off}}}$$


Effect of radiative corrections on results

- The effect on azimuthal asymmetries grows with $P_{\rm T}$, x and goes down with z
- No effect is observed, or expected for $A_{\mathrm{LU}}^{\sin\phi_h}$


negative hadrons

positive hadrons

Final results corrected on radiative effects

 \bullet systematic uncertainty is denoted as a band at the bottom (common for $h^\pm)$

Vendula Benešová 15 / 16 11. 04. 2024, Grenoble

Summary and conclusions

• 2016 unpolarized SIDIS on proton target

- New preliminary results of azimuthal asymmetries corrected on RE in 1D binning of z, x and $P_{\rm T}$
- \rightarrow significant effect of the radiative corrections
- \rightarrow significant effect of excluding background from EVMs
 - Ongoing work on radiative corrections in $P_T: z: x$ and $x: Q^2$ binning
- ⇒ Paper drafting to be started soon

Summary and conclusions

• 2016 unpolarized SIDIS on proton target

- New preliminary results of azimuthal asymmetries corrected on RE in 1D binning of z, x and P_T
- \rightarrow significant effect of the radiative corrections
- \rightarrow significant effect of excluding background from EVMs
- Ongoing work on radiative corrections in $P_T: z: x$ and $x: Q^2$ binning
- ⇒ Paper drafting to be started soon

Thank you for your attention!