Approximate N³LO PDF Benchmarking.

Robert Thorne (on behalf of les Houches benchmarking collaboration - A. Cooper-Sarkar, T. Cridge, F. Hekhorn, F. Guili, L. Harland Lang, J. Huston, G. Magni, S. Moch.)

April 11th 2024

University College London

Aproximate N³LO (and Higher Orders)

Leading source of uncertainties from Missing Higher Orders in perturbation theory. Numerous sources of this, i.e. splitting functions

 $\mathbf{P}(x,\alpha_s) = \alpha_s \mathbf{P}^{(0)}(x) + \alpha_s^2 \mathbf{P}^{(1)}(x) + \alpha_s^3 \mathbf{P}^{(2)}(x) + \alpha_s^4 \mathbf{P}^{(3)}(x) + \dots ,$

but also heavy flavour transition matrix elements and cross-sections

$$F(x,Q^2) = \sum_{\alpha \in \{H,q,g\}} \left(C_{q,\alpha}^{\mathrm{VF}, n_f+1} \otimes A_{\alpha i} (Q^2/m_h^2) \otimes f_i^{n_f}(Q^2) + C_{H,\alpha}^{\mathrm{VF}, n_f+1} \otimes A_{\alpha i} (Q^2/m_h^2) \otimes f_i^{n_f}(Q^2) \right),$$

$$\sigma_2^{had}(x_1, x_2, Q^2) = \sum_{\alpha, \beta \in \{H, q, g\}} \left(\sigma_{\alpha, \beta}^{\text{VF, } n_f + 1} \otimes A_{\alpha i}(Q^2/m_h^2) \otimes f_i^{n_f}(Q^2) \right)$$
$$\otimes A_{\beta j}(Q^2/m_h^2) \otimes f_j^{n_f}(Q^2) ,$$

Current knowledge is up to NNLO, with full higher orders unknown. However, already significant progress in calculating at $N^{3}LO$ [1-12].

N³LO - What do we know?

Zero-mass structure function N³LO coefficient functions are known [1]. Recently, final parts of transition matrix elements $A_{gg,H}$, A_{Hg} [13,14].

Some knowledge of leading terms in the small x and large x regime. Unknown subleading terms weakly constrained from precedent, approx C_F/C_A relations, smoothness etc. Example case

$$\boldsymbol{P}_{qg}^{(3)}(x) \to \frac{C_A^3}{3\pi^4} \left(\frac{82}{81} + 2\zeta_3\right) \frac{1}{2} \frac{\ln^2 1/x}{x} + \rho_{qg} \frac{\ln 1/x}{x},$$

Some numerical constraints (Lowinteger Mellin moments), until recently [2-11].

Intuition from lower orders and expectations from perturbation theory.

Very little about many crosssections (K-factors).

Splitting Functions at aN³LO - MSHT [15]

 N_m Mellin moments [1-5] (Moch et al.) can be used as constraints for

$$F(x) = \sum_{i=1}^{N_m} A_i f_i(x) + f_e(x).$$

Choose a set of functions and solve for A_i . (Similar for $A_{\alpha i}(m_h^2)$).

Introduce a degree of freedom a, interpreted as a nuisance parameter allowed to vary in a PDF fit, $f_e(x) \to f_e(x, a)$. In our treatment it is the coefficient of the most divergent unknown small-x term, e.g. for $P_{aq}^{(3)}(x)$

$$f_1(x) = \frac{1}{x} \quad \text{or} \quad \ln^4 x \quad \text{or} \quad \ln^3 x \quad \text{or} \quad \ln^2 x,$$

$$f_2(x) = \ln x,$$

$$f_2(x) = 1 \quad \text{or} \quad x \quad \text{or} \quad x^2,$$

$$f_3(x) = \ln^4(1-x) \quad \text{or} \quad \ln^3(1-x) \quad \text{or} \quad \ln^2(1-x) \quad \text{or} \quad \ln(1-x),$$

$$f_e(x, \rho_{qg}) = \frac{C_A^3}{3\pi^4} \left(\frac{82}{81} + 2\zeta_3\right) \frac{1}{2} \frac{\ln^2 1/x}{x} + \rho_{qg} \frac{\ln 1/x}{x}.$$

Resulting splitting functions

Uncertainty largest at small x. Best fit largely compatible with best estimate.

The PDFs at aN³LO compared to NNLO - detail.

The gluon is enhanced at smallx due to the large logarithms present at higher orders.

Light quarks enhanced slightly at high x.

Correlated and uncorrelated K- 1.025 factors show consistent uncertainty1.000 predictions. 0.975

NNPDF study recently completed [16]. Similar in numerous respects.

Approximate N³LO splitting functions as $\gamma_{ij}^{(3)} = \gamma_{ij,n_f^3}^{(3)} + \gamma_{ij,N\to\infty}^{(3)} + \gamma_{ij,N\to0}^{(3)} + \tilde{\gamma}_{ij}^{(3)}$ Parametrise $\tilde{\gamma}_{ij}^{(3)} = \sum_l a_{ij}^{(l)} G_l(N)$ - G_1 for the leading unknown large-N term - G_2 for the leading unknown small-N term - 3 or 8 G_l for the sub-leading unknown smalland large-N contributions - vary the functions G_l to generate a variety of approximations and estimate IHOU - determine the coefficients $a_{ij}^{(l)}$ with known moments and momentum conservation

Adopted basis function for $\tilde{\gamma}_{aa}^{(3)}$

 $\mathcal{M}[(1-x)x(1+x)], \ \mathcal{M}[(1-x)]$

$G_1(N)$	$\mathcal{M}[(1-x)\ln^2(1-x)]$
$G_2(N)$	$-rac{1}{(N-1)^2}+rac{1}{N^2}$
$G_3(N)$	$rac{1}{N^4}, \; rac{1}{N^3}, \; \mathcal{M}[(1-x)\ln(1-x)]$
-3()	$\mathcal{M}[(1-x)^2\ln(1-x)^2], \ \frac{1}{N-1} - \frac{1}{N}, \ \mathcal{M}[(1-x)\ln(x)]$
$G_4(N)$	${\cal M}[(1-x)(1+2x)], \; {\cal M}[(1-x)x^2],$

Parts unknown at N³LO estimated using existing covariance matrix/scale variation approach.

$$\Delta_m(ij,k) = T_m(ij,k) - \overline{T}_m,$$
$$\operatorname{cov}_{mn}^{(ij)} = \frac{1}{\widetilde{N}_{ij} - 1} \sum_{k=1}^{\widetilde{N}_{ij}} \Delta_m(ij,k) \Delta_n(ij,k).$$

$$\operatorname{cov}_{mn}^{\text{IHOU}} = \operatorname{cov}_{mn}^{(gg)} + \operatorname{cov}_{mn}^{(gq)} + \operatorname{cov}_{mn}^{(qg)} + \operatorname{cov}_{mn}^{(qq)}.$$
$$(\sigma_{ij}(N))^2 = \frac{1}{\widetilde{N}_{ij} - 1} \sum_{k=1}^{\widetilde{N}_{ij}} \left(\gamma_{ij}^{(3),\,(k)}(N) - \gamma_{ij}^{(3)}(N) \right)^2.$$

Gives uncertainty on splitting functions, similar approach for other quantities.

PDFs - main change in g

Consequences for Higgs Cross Sections.

Changes in N³LO cross section relative to use of NNLO PDFs obvious. Smaller for NNPDF than MSHT.

Recent improvements in knowledge of splitting functions.

Very recently [17-19] more moments have become available for splitting functions

Now 5 moments available for P_{gg} , P_{gq} . Allows improved constraint provided by [17] (Moch et al.)

Also now 10 moments for P_{qq}^{PS} and P_{qg} . Allows much improved constraint in [17,18] (Falconi, et al.).

Also now 10 moments for P_{gq} (Falconi - this meeting).

Comparison with MSHT and NNPDF versions

Benchmarking PDFs at N³LO

Given seeming difference in MSHT and NNPDF results, and new results on splitting functions desire for this.

Check consistency of PDF evolution, and of effect of $N^{3}LO$ specifically on evolution.

Following outline of previous benchmarking up to NNLO in arXiv:hep-ph/0511119.

Evolve specific PDF inputs at $Q_0^2 = 2 \text{GeV}^2$ up to higher scales using FFNS ($n_f = 4$) and VFNS.

Ongoing study to be written up for Les Houches proceedings.

Check output of various PDF flavours at $Q^2 = 10^4 \text{ GeV}^2$.

first check consistency between groups and previous results at NNLO.

Table 15: As Table 14, but for the variable- N_t evolution using the flavour matching conditions of Ref. [156, 158, 159]. The corresponding values for the strong coupling $\alpha_s(\mu_r^2 = 10^4 \text{ GeV}^2)$ are given by 0.115818, 0.115605 and 0.115410 for $\mu_r^2/\mu_t^2 = 0.5$, 1 and 2, respectively. For brevity the small, but non-vanishing valence distributions s_v , c_v and b_v are not displayed.

	NNLO, $N_{ m f}=3\ldots 5,~\mu_{ m f}^2=10^4~{ m GeV}^2$											
x	xu_v	xd_v	xL_{-}	$2xL_+$	xs_+	xc_+	xb_+	xg				
	$\mu_{ m r}^2 = \mu_{ m f}^2$											
10^{-7}	1.5978^{-4}	1.0699^{-5}	6.0090^{-6}	1.3916^{+2}	6.8509^{+1}	6.6929^{+1}	5.7438^{+1}	9.9694^{+3}				
10^{-6}	10^{-6} 7.1787 ⁻⁴ 4.5929 ⁻⁴ 2.6569 ⁻⁵				3.5003^{+1}	3.3849^{+1}	2.8332^{+1}	4.8817^{+2}				
10^{-5}	10^{-5} 3.1907 ⁻³ 1.9532 ⁻³ 1.1116 ⁻⁴				1.6690^{+1}	1.5875^{+1}	1.2896^{+1}	2.2012^{+2}				
10^{-4}	1.4023^{-2}	8.2749^{-3}	4.3744^{-4}	1.5617^{+1}	7.2747^{+0}	6.7244^{+0}	5.2597^{+0}	8.8804^{+1}				
10^{-3}	6.0019^{-2}	3.4519^{-2}	1.6296^{-3}	6.4173^{+0}	2.7954^{+0}	2.4494^{+0}	1.8139^{+0}	3.0404^{+1}				
10^{-2}	2.3244^{-1}	1.3000^{-1}	5.6100^{-3}	2.2778^{+0}	8.5749^{-1}	6.6746^{-1}	4.5073^{-1}	7.7912^{+0}				
0.1	5.4993^{-1}	2.7035^{-1}	9.9596-3	3.8526^{-1}	1.1230^{-1}	6.4466^{-2}	3.7280^{-2}	8.5266^{-1}				
0.3	3.4622^{-1}	1.2833^{-1}	2.9572^{-3}	3.4600^{-2}	8.8410-3	4.0134-3	2.1047^{-3}	7.8898^{-2}				
0.5	1.1868^{-1}	3.0811-2	3.6760-4	2.3198-3	5.6309-*	2.3752^{-4}	1.2004^{-4}	7.6398-3				
0.7	1.9486-2	2.9901-3	1.2957-*	5.2352 ⁻ °	1.2504^{-6}	5.6038-0	2.8888-6	3.7080-4				
0.9	3.3522^{-4}	1.6933^{-0}	8.209-9	2.574^{-8}	6.856-9	4.337-9	2.679^{-9}	1.1721^{-6}				
				$\mu_{ m r}^2=2\mu$	2 f							
10^{-7}	1.3950^{-4}	9.0954^{-5}	5.2113^{-6}	1.3549^{+2}	6.6672^{+1}	6.5348^{+1}	5.6851^{+1}	1.0084^{+3}				
10^{-6}	6.4865^{-4}	4.0691^{-4}	2.3344^{-5}	6.9214^{+1}	3.3753^{+1}	3.2772^{+1}	2.7818^{+1}	4.8816^{+2}				
10^{-5}	10^{-5} 2.9777 ⁻³ 1.8020 ⁻³ 9.9329 ⁻⁵		3.3385^{+1}	1.6015^{+1}	1.5306^{+1}	1.2601^{+1}	2.1838^{+2}					
10^{-4}	1.3452^{-2}	3452^{-2} 7.9078 ⁻³ 4.0036 ⁻⁴		1.5035^{+1}	6.9818^{+0}	6.4880^{+0}	5.1327^{+0}	8.7550^{+1}				
10^{-3}	10^{-3} 5.8746 ⁻² 3.3815 ⁻² 1.5411 ⁻³		6.2321^{+0}	2.7012^{+0}	2.3747^{+0}	1.7742^{+0}	3.0060^{+1}					
10^{-2} 2.3063 ⁻¹ 1.2923 ⁻¹ 5.4954 ⁻³		2.2490^{+0}	8.4141^{-1}	6.5083^{-1}	4.4354^{-1}	7.7495^{+0}						
0.1 5.5279^{-1} 2.7222^{-1} 1.0021^{-2}		3.8897^{-1}	1.1312^{-1}	6.2917^{-2}	3.7048^{-2}	8.5897^{-1}						
0.3 3.5141^{-1} 1.3051^{-1} 3.0134^{-3}			3.5398^{-2}	9.0559^{-3}	3.8727^{-3}	2.0993^{-3}	8.0226^{-2}					
0.5 1.2140^{-1} 3.1590^{-2} 3.7799^{-4}				2.3919^{-3}	5.8148^{-4}	2.2376^{-4}	1.1918^{-4}	7.8098^{-3}				
0.7 2.0120^{-2} 3.0955^{-3} 1.3462^{-5}		5.4194^{-5}	1.2896^{-5}	5.0329^{-6}	2.8153^{-6}	3.8099^{-4}						
0.9	3.5230 - 4	1.7849^{-5}	8.687-9	2.568^{-8}	6.513-9	3.390^{-9}	2.407^{-9}	1.2188^{-6}				
	$\mu_t^2 = 1/2\mu_{ m f}^2$											
10^{-7}	1.8906^{-4}	1.3200^{-4}	6.9268^{-6}	1.3739^{+2}	6.7627^{+1}	6.5548^{+1}	5.5295^{+1}	9.4403^{+2}				
10^{-6}	8.1001^{-4}	5.3574^{-4}	3.0345^{-5}	7.2374^{+1}	3.5337^{+1}	3.3846^{+1}	2.7870^{+1}	4.7444^{+2}				
10^{-5}	3.4428^{-3}	2.1524^{-3}	1.2531^{-4}	$3.5529^{\pm1}$	1.7091^{+1}	1.6065^{+1}	1.2883^{+1}	2.1802^{+2}				
10^{-4}	1.4580^{-2}	8.6744^{-3}	4.8276^{-4}	1.6042^{+1}	7.4886^{+0}	6.8276^{+0}	5.3044^{+0}	8.9013^{+1}				
10^{-3}	10^{-3} 6.0912 ⁻² 3.5030 ⁻² 1.7393 ⁻³				2.8656^{+0}	2.4802^{+0}	1.8362^{+0}	3.0617^{+1}				
10^{-2}	2.3327^{-1}	1.3022^{-1}	5.7588^{-3}	2.2949^{+0}	8.6723^{-1}	6.7688^{-1}	4.5597^{-1}	7.8243^{+0}_{*}				
0.1	0.1 5.4798^{-1} 2.6905^{-1} 9.9470^{-3}				1.1124^{-1}	6.7091^{-2}	3.7698^{-2}	8.4908^{-1}				
0.3	0.3 3.4291^{-1} 1.2693^{-1} 2.9239^{-3}				8.6867^{-3}	4.3924^{-3}	2.1435^{-3}	7.8109^{-2}				
0.5	0.5 1.1694^{-1} 3.0310^{-2} 3.6112^{-4}			2.2828^{-3}	5.5537^{-4}	2.7744^{-4}	1.2416^{-4}	7.5371^{-3}				
0.7 1.9076^{-2} 2.9217^{-3} 1.2635^{-5}				5.2061^{-5}	1.2677^{-5}	7.2083^{-6}	3.0908^{-6}	3.6441^{-4}				
0.9	3.2404^{-4}	1.6333^{-5}	7.900-9	2.850^{-8}	8.407^{-9}	6.795^{-9}	3.205^{-9}	1.1411^{-6}				

VENS		
MOUT		% Diff of Table 15
	100 100 100 100 100 100 100 100 100 100	A Diff of Table 13
2		
A		5 TRATTOR 1 454 (\$5004 0.31037005 0.050000340 0.001200240 0.00120140 0.001400646 0.005107025 0.002415102 0.004702000 0.002072005
xuv	0.0001/02/46 0.000/263112 0.00220067/6 0.0140315365 0.060021575 0.2224356531 0.5465256547 0.116654055 0.0154650662 0.0000352206	0.72477800 143440004 0.318978063 0.00068948 0.00250249 0.00178144 0.00148946 0.003007833 0.003415103 -0.00478208 0.002872995
xav	0.0001131562 0.0004662568 0.0019591481 0.0062/38121 0.0345202167 0.129955/5/9 0.2/036010/5 0.1283337156 0.0308105987 0.002869376 1.68824638-05	5.78357/279 1298917918 0.304533453 0.059361691 0.003524803 -0.00325544 0.003738674 0.002895372 -0.00130244 -0.00543217 0.29210766
XL-	6.340/96/E-062.8838085E-05 0.000111361 0.00043/5606 0.0016295458 0.005609/858 0.0095601319 0.00295/15/4 0.00086/565512966913E-058.3946228E-09	5221002538 1012/78192 0.180/9635/ 0.02/580135 -0.0033286/ -0.00381901 0.00534106/ -0.00143928 -0.0093/704 0.076507725 2.261210857
2xL+	139.22938531 71.723535696 34.733495032 15.616175163 6.4163010768 2.2774283946 0.3851792319 0.0345886861 0.00231901495.2370537E-05 2.5672906E-08	0.049860097 0.018875605 0.004304481 -0.00528166 -0.0155661 -0.01631422 -0.02096457 -0.03269922 -0.03384259 0.035408441 -0.26066171
XS+	68.542346121 35.010180373 16.691032972 7.2740522141 2.7949296951 0.8572896433 0.1122608987 0.00883556 0.000562623 1.2491318E-05 6.6688885E-09	0.048674074 0.020513593 0.006189168 -0.00890464 -0.01682424 -0.02336549 -0.03481861 -0.0615312 -0.08292746 -0.10142276 -2.72916493
xc+	66.954641827 33.851618557 15.87230924 6.722279948 2.4481510177 0.6669270751 0.0643587162 0.0040017131 0.00023707645.5280208E-06 2.8139933E-09	0.038311983 0.007735995 -0.01694967 -0.03152775 -0.05099136 -0.07984372 -0.16641915 -0.29119796 -0.18676312 -1.35228188 -351165933
xb+	57.472577322 28.34001755 12.897157111 5.2593976479 1.8135182473 0.4505455055 0.0372484074 0.0021013203 0.0001199588 2.8618412E-06 2.1064032E-09	0.060199384 0.028298568 0.008972637 -0.00574847 -0.02104596 -0.04093238 -0.0847442 -0.16058089 -0.06762597 -0.9332165 -21.3735278
xg	997.62937958 488.35333788 220.16054651 88.809881995 30.403337232 7.7909407531 0.8526027179 0.0788775885 0.007636451 0.0003706604 1.1764031E-06	0.069149556 0.037556155 0.018420186 0.00662357 -0.00217987 -0.00332743 -0.00671805 -0.02587071 -0.04383567 -0.03765187 0.367129326
NNDDE		
NNEDE		
u_v	0.000159/824 0.00071/8688 0.003197/024 0.0140222/887 0.0600191996 0.2224397883 0.5495296887 0.346220217 0.1186/55105 0.0154859521 0.0003331513	0.0014859/3 -0.00059008 (7.43/75E-05 0.001915836 0.00033249 -0.0001126 -0.0014E-05 0.20/77E-05 -0.00041246 -0.00024593 -0.0001255
a_v	0.0001069924 0.0004592943 0.001953159 0.0082/46689 0.0345191/69 0.1299988852 0.2/03522541 0.12832/2126 0.0308119335 0.0029916486 1./424361E-05	0.002261055 0.000929842 -0.00210089 -0.00037529 0.000512543 -0.00084905 0.000833789 -0.00217203 0.003029981 0.051792487 2.9017955
L_m	6.0090155E-06 2.6568/08E-05 0.0001111556 0.0004374367 0.00162957 0.0056099937 0.009959485 0.0029571098 0.000367636 1.294161E-05 1.0526658E-08	0.000257795 -0.00109868 -0.00400207 -0.00075643 -0.00184175 -0.00011245 -0.00115487 -0.00305163 0.0097949 -0.11877484 28.23313583
Lp	139.13928063 71.682267454 34.722989246 15.611573097 6.4149915243 2.277054108 0.3852489055 0.0346046497 0.00232188535.2561757E-05 5.649527E-08	-0.01488888 -0.03867319 -0.02594367 -0.03474997 -0.03597269 -0.03274616 -0.00287974 0.01343856 0.089890278 0.400666515 119.4843415
s_p	68.497319784 34.989734427 16.685881942 7.2718502374 2.7943465111 0.8571489068 0.1122996567 0.0088431966 0.0005641707 1.2683117E-05 2.0212418E-08	-0.01704917 -0.03789839 -0.0246738 -0.03917361 -0.03768652 -0.03977809 -0.00030573 0.024845748 0.191931593 1.43247983 194.8135676
CD .	66.916979839 33.836111497 15.870039212 6.7216684468 2.4483610211 0.6671721948 0.0644633379 0.0040153303 0.00023861195.8264856E-06 1.4645617E-08	-0.01795957 -0.03807647 -0.03124906 -0.04062152 -0.04241769 -0.04311946 -0.00412943 0.048096474 0.45972368 3.973832494 237.6900296
b_p	57.425685927 28.320322847 12.89214786 5.2575166766 1.8131378129 0.4505094514 0.0372798125 0.0021060685 0.00012078293.0407997E-067.7238412E-09	-0.0214389 -0.04121542 -0.02987081 -0.04151042 -0.04201924 -0.04893142 -0.00050294 0.065022367 0.618848018 5.261690384 188.310608
g	996.66751451 487.94381715 220.04499947 88.76429755 30.390653078 7.7876349099 0.8526568834 0.0788978737 0.007639902 0.0003705933 1.2675973E-06	-0.02733219 -0.0463328 -0.03407256 -0.04470795 -0.04389857 -0.04575791 -0.00036552 -0.00016012 0.001334512 -0.05573542 8.14754079

MSHT very similar except at very low x, mainly in extrapolation region of grids.

NNPDF very similar except at very high x.

Both excellent agreement except this.

MSHT and NNPDF evolution at N³LO compared to NNLO (plot by G, Magni) for various splitting function choices. **Prelimary**

Some difference in own versions, particularly when based on less information than most up-to-date versions, at very small x.

initially some different choices in non-singlet. Differences disappear when common choices made (later).

MSHT evolution at N³LO compared to NNLO for various splitting function choices. **Prelimary**

Some differences at small-x in particular, including between MSHT prior and posterior.

MSHT and NNPDF evolution at N³LO when both using Moch et al. splitting functions and common non-singlet choices.

VENS											
MSHT FHMRU/W NS all undated											
0	100	100	100	100	100	100	100	100	100	100	10
*	1E-07	1E-06	1E-05	0 0001	0.001	0.01	01	0.3	0.5	07	0
XIV	0 00011639	0.00060389	0.0030183	0.014024	0.060636	0 23325	0 54876	0 34472	0 11 798	0.019335	0.0003314
xdv	5 563E-05	0.00033257	0.0017563	0.0082158	0.034976	0 1 3 0 5 5	0 26967	0 12772	0.030615	0.0029654	1.6782E-0
N.	8 3396E-06	3 2692E-05	0.00012872	0.00048879	0.0017596	0.0058026	0.0099483	0.0029024	0.00034653	9 2473E-06	-6.3382E-0
2xL+	159 15	76 153	35.49	15 724	6,4308	2 2752	0.38453	0.034706	0.0023789	6 21E-05	1.8337E-0
***	78 505	37 227	17 071	7 329	2 8038	0.85774	0 11219	0.0088422	0.00056438	1 2548E-05	6 2892E-0
30+	76 906	36.062	16 248	6 7755	2 4567	0.66785	0.064546	0.0040495	0.0002437	5 9902E-06	84763E-0
xb+	64.245	29.625	13.056	5,2766	1 8204	0.45172	0.037236	0.0021095	0.00012144	2.9754E-06	3.533E-0
10	1097.3	505.44	221.75	88,931	30.517	7,816	0.85051	0.078671	0.0076252	0.00037046	1.1753E-0
NNPDF FHMRUVV											
q	100	100	100	100	100	100	100	100	100	100	10
x	1E-07	1E-06	1E-05	0.0001	0.001	0.01	0.1	0.3	0.5	0.7	0.
xuv	0.00010347	0.0005885	0.0029963	0.013998	0.060651	0.23339	0.549	0.34485	0.11803	0.019344	0.0003295
xdv	4.7297E-05	0.00032158	0.001738	0.0081908	0.034981	0.13065	0.26978	0.12776	0.030629	0.0029683	1.7232E-0
xL-	7.987E-06	3.2458E-05	0.00012878	0.00048992	0.0017651	0.0058248	0.010007	0.0029491	0.00036563	1.2839E-05	1.035E-0
2xL+	158.46	75.933	35.427	15.705	6.4269	2.2744	0.38425	0.034522	0.0023176	5.2471E-05	5.57E-0
xs+	78.161	37.117	17.039	7.3201	2.802	0.85749	0.11225	0.0088517	0.00056611	1.2749E-05	1.9893E-0
xc+	76.573	35.959	16.221	6.7688	2.4559	0.66796	0.064658	0.0040601	0.00024371	5.9801E-06	1.4418E-0
xb+	63.897	29.511	13.021	5.2666	1.8183	0.45145	0.037274	0.002115	0.00012203	3.0847E-06	7.7074E-0
xg	1094.1	504.76	221.69	88.942	30.527	7.8173	0.85068	0.078667	0.0076246	0.0003702	1.2669E-0
-											

% Diff of NNPE	DF									
12.48671112	2.615123195	0.734238895	0.18574082	-0.02473166	-0.05998543	-0.04371585	-0.03769755	-0.04236211	-0.04652605	0.585647095
17.6184536	3.417501088	1.052934407	0.305220491	-0.01429347	-0.07654038	-0.04077396	-0.0313087	-0.04570832	-0.09769902	-2.61142061
4.414673845	0.720931666	-0.04659109	-0.2306499	-0.31159708	-0.38112897	-0.58658939	-1.58353396	-5.22386019	-27.9749202	-712.386473
0.435441121	0.289729103	0.177830468	0.120980579	0.060682444	0.035174112	0.072869226	0.532993453	2.644977563	18.35108917	229.2100539
0.440117194	0.296360158	0.187804449	0.121583038	0.064239829	0.029154859	-0.05345212	-0.10732402	-0.30559432	-1.57659424	-68.384859
0.434879135	0.286437331	0.166450897	0.098983572	0.032574616	-0.01646805	-0.17321909	-0.26107731	-0.00410324	0.168893497	-41.2102927
0.544626508	0.386296635	0.268796559	0.189875821	0.115492493	0.059807288	-0.10194774	-0.26004728	-0.48348767	-3.54329432	-54.1609362
0.292477836	0.134717489	0.02706482	-0.01236761	-0.03275789	-0.01662978	-0.01998401	0.005084724	0.007869265	0.070232307	-7.23024706

Comparison of MSHT and NNPDF fit PDFs.

As with benchmark evolved PDFS the main difference is in the gluon at $x \sim 0.01$ but discrepency a little larger.

Effect of MSHT fits with improved splitting functions.

Note - no uncertainties used for improved splitting functions - only central value. Now almost exclusively at small x.

Use of (central value of) improved N³LO splitting functions changes N³LO gluon a little compared to published MSHT PDFs, raising 1.5% near x = 0.01.

Main features of $N^{3}LO$ comparison to NNLO remain the same.

Effect of each individual $N^{3}LO$ change.

Not only splitting functions responsible for change in PDFs.

Conclusions

Approximate $N^{3}LO$ PDFs are available and we encourage their use.

Designed so that theoretical uncertainties represent the missing parts of $N^{3}LO$, i.e. assume this is the dominant source of missing higher order corrections. Approaches to this differ.

Better precision, control of uncertainties, and better fit quality.

MSHT and now also NNPDF PDFs available as LHAPDF grids.

Some apparent differences between MSHT and NNPDF versions.

Benchmarking largely complete underway. Shows evolution consistent when same splitting functions used. Differences in evolution from the applied splitting functions – recent updates have led to significant improvements.

Indications from fits with more similar splitting functions and further analyses (e.g. cuts) reveal converenge and/or understanding of differences.

References

- [1] J. Vermaseren, A. Vogt, and S. Moch, Nuclear Physics B, 724, 3182 (2005)
- [2] S. Moch, B. Ruijl, T. Ueda, J. A. M. Vermaseren, and A. Vogt, Journal of High Energy, 1653, Physics, 2017, (2017)
- [3] A. Vogt et al., PoS LL2018, 050 (2018), 1808.08981
- [4] S. Moch, B. Ruijl, T. Ueda, J. A. M. Vermaseren, and A. Vogt, (2021), 2111.15561
- [5] S. Moch, B. Ruijl, T. Ueda, J. A. M. Vermaseren, and A. Vogt, Journal of High Energy, 1664, Physics, 2017, (2017)
- [6] I. Bierenbaum, J. Blumlein, and S. Klein, Nuclear Physics B, 820, 417 (2009)
- [7] M. Bonvini and S. Marzani, Journal of High Energy Physics, 2018, (2018)
- [8] J. Ablinger et al., Nucl. Phys. B, 886, 733 (2014), 1406.4654.
- 9] J. Ablinger et al., Nuclear Physics B, 890, 48151 (2015)
- [10] J. Ablinger et al., Nuclear Physics B, 882, 263288 (2014)
- [11] H. Kawamura, N. A. Lo Presti, S. Moch, and A. Vogt, Nucl. Phys. B, 864, 399 (2012),1689
- [12] J. Blumlein et al., PoS, QCDEV2017, 031 (2017), 1711.07957
- [13] J. Ablinger et al., JHEP 12 (2022) 134.
- [14] J. Ablinger, et al. 2403.00513.
- [15] J. McGowan, T. Cridge, L. A. Harland-Lang and R. S. Thorne, Eur. Phys. J. C83 (2023) no.3, 185.
- [16] R.D. Ball et al., 2402.18635.
- [17] G. Falcioni, F. Herzog, S. Moch and A. Vogt, Phys. Lett. B 842 (2023).
- [18] G. Falcioni, F. Herzog, S. Moch and A. Vogt, Phys. Lett. B 846 (2023).
- [19] S. Moch, B. Ruijl, T. Ueda, J. Vermaseren and A. Vogt.

Back-up

Application of aN³LO PDFs.

aN3LO PDFs for Zp_T at low q_T :

MSHT20aN3L0 PDFs already starting to be used by theory community

 e.g. resummed (+ fixed order) predictions for Zp_T spectrum at low
 transverse momenta:

 aN3LO PDFs fit the measured ATLAS data better, likely due to indirect effects of gluon shape change.... need to look into this more!
 Figure Credit: SCETlib - Georgios Billis, shown by Johannes Michel at LHC EW WG Sep 2022.