

Introduction

- Heavy-ion collisions at the LHC → explore the state
 → quark-gluon plasma, QGP
- Heavy quarks (charm and beauty) are effective probes of the QGP;
 - predominantly produced in the initial hard scattering processes
 - experience the full evolution of medium created by heavy-ion collisions, and subsequently interact with the medium constituents
 - Iose energy while traversing the medium via radiative and collisional processes, and participate in the collective expansion of the medium
- In Production cross section in pp collisions can be calculated using a factorisation approach

Heavy-ion collisions at the LHC \rightarrow explore the state of matter in which quarks and gluons are deconfined,

$$\frac{d\sigma^q}{dp_T^q}$$

×
$$D_{q \to H}(z = p_H/p_q)$$
 - non-perturbative
- fit to data (e-p, e+e-)

- perturbative (pQCD)

p–A collisions

Study cold nuclear matter (CNM) effects

- Study transport properties of the QGP
- Hadronisation in the presence of QGP

ALICE detector in Run 2

Cross section of D mesons in pp collisions

ALI-PUB-567851

Jonghan Park (Univ. of Tsukuba)

Charm baryon-to-meson ratio in pp collisions

ALI-PUB-567876

I-PUB-567881

- Charm baryon-to-meson ratios compared to model predictions (PYTHIA 8, Catania, QCM, SHM+RQM, POWLANG) \checkmark The Λ_c^+/D^0 is not described by a model based on fragmentation function tuned on e⁺e⁻ collisions
- \bigcirc

Models underestimate the measured Ξ_c^+/D^0 ratios, but coalescence models provide better descriptions

FF and total charm cross section in pp collisions

- Charm-quark fragmentation fractions $f(c \rightarrow h_c)$ \bigcirc
 - ✓ **No significant energy dependence** at the LHC
- Lie on the upper edge of FONLL and NNLO predictions

Jonghan Park (Univ. of Tsukuba)

\checkmark Enhancement of baryons \rightarrow overall reduction of the D-meson abundance relative to e+e- and e-p collisions

Total $c\bar{c}$ cross section from the sum of the production cross sections of D⁰, D⁺, D⁺_s, J/ ψ , Λ_c^+ , Ξ_c^0 , and Ξ_c^+

Recent heavy flavour measurements from ALICE

Cross section of non-prompt D mesons in pp collisions

Jonghan Park (Univ. of Tsukuba)

ALI-PUB-568824

arXiv:2402.16417

Non-prompt charm hadron

- Charm hadrons from beautyhadron decays

PYTHIA 8

<u>Comput. Phys. Commun. 191 (2015) 159–177</u> Eur. Phys. J. C 74 (2014) 3024

FONLL JHEP 05 (1998) 007 JHEP 10 (2012) 137

 Consistent with data within uncertainties

TAMU

Phys. Rev. Lett. 131 (2023) 012301

- Good agreement for D⁰
- Tend to overestimate the nonprompt D⁺

GM-VFNS

JHEP 12 (2017) 021 Nucl. Phys. B 925 (2017) 415–430 J. Phys. G 41 (2014) 075006

 Underestimate the data at low p_{T} , whereas a better description at high p_{T}

7

Non-prompt Λ_c/D^0 ratio and total cross section in pp collisions

Ratio of p_T -differential production cross section of non-prompt Λ_c^+ and D^0

- ✓ Ratio, $\Lambda_{\rm b}^0/({\rm B}^0 + {\rm B}^+)$ is a bit lower than non-prompt $\Lambda_{\rm c}^+/{\rm D}^0$
- Beauty, charm, and strange hadrons have a similar trend and are compatible within uncertainties \checkmark
- PYTHIA with CR-BLC tune describes the data for $p_T > 2 \text{ GeV}/c$ and significantly higher at low p_T for heavy-flavour hadrons
- uncertainties \rightarrow NNLO is closer to data due to higher perturbative accuracy

Jonghan Park (Univ. of Tsukuba)

ratio

oaryon-to-meson

Total bb cross section as a function of $\sqrt{s} \rightarrow$ described by pQCD calculations (FONLL and NNLO) within

Recent heavy flavour measurements from ALICE

DIS 2024

Prompt and non-prompt Λ_c/D^0 ratio in p–Pb collisions

- Similar trend of Λ_c^+/D^0 in both pp and p–Pb collisions ✓ Shift towards higher p_T in p-Pb collisions attributed to radial flow (described by QCM prediction)
- Decreasing trend of non-prompt Λ_c^+/D^0 at midrapidity with increasing p_T \checkmark

Jonghan Park (Univ. of Tsukuba)

Baryon enhancement at low $p_T \rightarrow$ hadronisation effects apart from in-vacuum fragmentation

Recent heavy flavour measurements from ALICE

R_{pPb} of prompt charm hadrons in p–Pb collisions

- D-meson R_{pPb} is compatible with unity and compared to model predictions including CNM effects
- \bigcirc \checkmark R_{pPb} of Ξ_c^0 is larger than unity \rightarrow no conclusion of increasing trend with p_T due to large uncertainties
 - Models underestimate the data (only $\Lambda_c^+ R_{pPb}$ is described below 2 GeV/c) \checkmark

Jonghan Park (Univ. of Tsukuba)

Both Λ_c^+ and $\Xi_c^0 R_{pPb}$ are compatible within uncertainties \rightarrow similar modification of the production in p–Pb collisions

10

R_{pPb} of non-prompt charm hadrons in p–Pb collisions

- $p_{\rm T}$ -integrated $R_{\rm pPb}$ of non-prompt D⁰ and J/ ψ measured at midrapidity
 - Observed a **possible suppression for non-prompt** J/ψ \checkmark
 - Suppression at forward rapidity whereas compatible with unity at backward rapidity
 - Good agreement with model predictions within uncertainties
- Consistent with B meson R_{pPb} result from CMS at high p_T \bigcirc

Jonghan Park (Univ. of Tsukuba)

Recent heavy flavour measurements from ALICE

- Compare to different model predictions

 - Catania : underestimate the data in the intermediate p_T region
 - TAMU : reproduce the magnitude and shape of the data, and better description within uncertainties

SHMC: JHEP 07 (2021) 035 Catania: Phys. Lett. B 821 (2021) 136622 (pp) EPJC 78 (2018) 348 (Pb-Pb) TAMU: Phys. Lett. B 795 (2019) 117-121 (pp) Phys. Rev. Lett. 124 (2020) 042301 (Pb-Pb)

Ratio of Λ_c^+/D^0 increases from pp to semicentral and central Pb–Pb collisions at the intermediate p_T region

SHMc : describe the ratio in semicentral collisions and underestimate the data in $4 < p_T < 8 \text{ GeV/c}$ in central collisions

Λ_c/D^0 ratio in Pb–Pb collisions

- p_{T} -integrated Λ_{c}^{+}/D^{0} ratio vs multiplicity from pp to Pb–Pb No multiplicity dependence observed
- Suggest a modified mechanism of hadronisation in all hadronic collisions w.r.t e⁺e⁻ and e⁻p collisions (PYTHIA 8)
- Catania and TAMU describe the data, while SHMc underestimates the data
 - unobserved charm-baryon states need to be assumed \checkmark in normalisation

SHMc : JHEP 07 (2021) 035 Catania : Phys. Lett. B 821 (2021) 136622 (pp) EPJC 78 (2018) 348 (Pb-Pb) TAMU : Phys. Lett. B 795 (2019) 117-121 (pp) Phys. Rev. Lett. 124 (2020) 042301 (Pb-Pb) **PYTHIA 8 :** <u>Comput. Phys. Commun. 191 (2015) 159–177</u>

R_{AA} and v₂ of non-strange D mesons in Pb–Pb collisions

ALI-PUB-501956

- - Models fairly describe the data, but challenging to describe the R_{AA} and v_2 simultaneously \checkmark
 - Realistic QGP evolution, collisional/radiative energy loss, and hadronisation mechanisms (fragmentation/coalescence) are required to describe the data

TAMU

Phys. Rev. Lett. 124 (2020) 042301

LIDO

Phys. Rev. C 100 (2019) 064911

PHSD Phys. Rev. C 92 (2015) 014910

DAB-MOD Phys. Rev. C 102 (2020) 024906

Catania Phys. Rev. C 96 (2017) 044905 Phys. Lett. B 805 (2020) 135460

MC@sHQ+EPOS2 Phys. Rev. C 89 (2014) 014905

LBT

Phys. Rev. C 94 (2016) 014909 Phys. Lett. B 777 (2018) 255

POWLANG+HLT EPJC 75 (2015) 121 JHEP 02 (2018) 043

LGR EPJC 80 (2020) 671

Understanding the heavy-quark interactions with the medium constitutes by comparing R_{AA} and v_2 with models

Sensitive to quark diffusion, thermalisation with the medium, and hadronisation mechanisms for $2 < p_T < 6 \text{ GeV}/c$

14

R_{AA} of charm hadrons in Pb–Pb collisions

- **Suppression of all charm species** from $p_T > 6 \text{ GeV}/c$ for 0–10% and from $p_T > 4 \text{ GeV}/c$ for 30–50% \bigcirc
 - Interaction of charm quarks with the medium
- \bigcirc
- For $p_T > 10 \text{ GeV/}c$, all R_{AA} are compatible within uncertainties

Hint of a hierarchy $R_{AA}(D^0) < R_{AA}(D_s^+) < R_{AA}(\Lambda_c^+)$ in $4 < p_T < 8 \text{ GeV/c}$ in 0-10%, while less pronounced in 30-50%

ALI-PUB-534213

- Non-prompt D⁰ R_{AA} is systematically higher than that of prompt D⁰ for $p_T > 5$ GeV/c \bigcirc ✓ Hint of a mass dependent in-medium energy loss
- - \checkmark
 - At hight p_{T} , beauty quarks lose less energy than charm quarks via radiative processes \checkmark

 R_{AA} ratio of non-prompt D⁰ to prompt D⁰ as a function of p_T in 0–10% centrality compared to model predictions At low p_T , formation of D mesons via coalescence makes a hardening of the prompt D⁰ meson p_T

Recent heavy flavour measurements from ALICE

R_{AA} ratio of non-prompt D mesons in Pb–Pb collisions

- R_{AA} ratio of non-prompt D_s^+ to prompt D_s^+ and non-prompt D^0
 - Larger energy loss of charm quark with respect to beauty quark in central collisions
 - Consistent with unity in semicentral collisions
- TAMU model describes the data for central collisions while overestimates for semicentral collisions
 - \checkmark

Possible enhancement at low $p_T \rightarrow$ the abundance of strange quarks and the hadronisation via recombination

Recent heavy flavour measurements from ALICE

17

Elliptic flow of non-prompt D mesons in Pb–Pb collisions

- Non-prompt D⁰ v_2 is lower than that of prompt non-strange D meson v_2 \checkmark
- Compatible with the v_2 of beauty-decay electrons within uncertainties
 - Good agreement with LIDO predictions
 - No significant difference of decay kinematics between B meson and non-prompt D⁰ meson

Jonghan Park (Univ. of Tsukuba)

Different degree of participation between charm and beauty quarks in the medium expansion

Heavy flavour (charm & beauty) measurements in pp, p–Pb, and Pb–Pb collisions with ALICE detector In pp collisions :

- Production cross section described by pQCD calculations
- Fragmentation function universality is violated in pp collisions • Hadronisation via recombination is dominant at low p_T

In p–Pb collisions :

- Enhanced baryon production in p–Pb collisions w.r.t pp collisions in the intermediate p_T region

In Pb–Pb collisions :

- Baryon enhancement depends on the event multiplicity, while p_T-integrated baryon-to-meson ratio is consistent across collision systems
- Both charm and beauty quarks lose energy in the medium
 Beauty quarks lose less energy than charm quarks
- Heavy quarks participate in a hydrodynamically expanding medium, v₂(HF) > 0
 ✓ v₂(c) > v₂(b)

Outlook in Run 3

Jonghan Park (Univ. of Tsukuba)

- New Inner Tracking System
- ✓ 2 pixels + 2 drifts + 2 strips \rightarrow 7 pixels (3 inners + 4 outers)
 - Based on MAPS, pixel size + material budget reduction, and fast readout Improve vertexing and tracking
- New readout for most sub detectors
 - Higher statistics and performance

New observables in addition to precise measurements on HF sector

R_{AA} of **D**_s mesons in Pb–Pb collisions

- Compared to model predictions implementing charm quark transport in the medium \bigcirc
 - \checkmark coalescence
- Models qualitatively reproduce the measured R_{AA}
 - \checkmark

Include an enhancement of the strangeness in the medium and the hadronisation either via fragmentation and

LGR model including both collisional and radiative interactions, gives a better description of the data up to high p_{T}

R_{AA} of non-prompt D mesons in Pb–Pb collisions

Jonghan Park (Univ. of Tsukuba)

• Comparison of non-prompt $D_s^+ R_{AA}$ to ones of prompt D_s^+ and non-prompt D^0 mesons

 $R_{\rm AA} = \frac{1}{A} \frac{{\rm d}^2 \sigma_{\rm PbPb} / {\rm d}p_{\rm T}}{{\rm d}^2 \sigma_{\rm pp} / {\rm d}p_{\rm T}}$

- ✓ Give a hint of the interaction of heavy quarks with medium and of the beauty quark hadronisation mechanism
- Non-prompt $D_s^+ R_{AA}$ vs prompt $D_s^+ R_{AA}$
 - ✓ Mass dependence of the in-medium energy loss
- Non-prompt $D_s^+ R_{AA}$ vs non-prompt $D^0 R_{AA}$
 - Effect of hadronisation via recombination and a strangenessrich environment
- In semicentral collisions, consistent within uncertainties
- Compare to model prediction and qualitatively describes the p_T trend, although the model overestimates the data

R_{AA} of **D**_s mesons in Pb–Pb collisions

- Both D_s^+ and non-strange D mesons have a minimum value of R_{AA} around 10 GeV/c \bigcirc
- For $p_T < 10 \,\text{GeV}/c$, $D_s^+ R_{AA}$ is systematically higher than that of non-strange D mesons \bigcirc Hadronisation via recombination with abundantly produced strange quarks in the medium \checkmark
- For $p_T > 10 \text{ GeV/c}$, both R_{AA} are compatible within uncertainties \bigcirc
 - Hadronisation via fragmentation is dominant \checkmark

Phys. Lett. B 827 (2022) 136986

Elliptic flow of prompt D mesons in Pb–Pb collisions

- Comparison of v_2 between strange and non-strange D mesons igodol
 - No differences within uncertainties
- \bigcirc

✓ Different mass, hadronisation via recombination with strange vs light quarks, possible differences in hadronic phase Models, including charm quark coalescence with strange quarks in the medium, describe the data within uncertainties

R_{AA} of Λ_c in Pb–Pb collisions

- TAMU model provides a good description over the full p_T range in both 0–10% and 30–50% centralities
- Catania model describe the data for $p_T > 2 \text{ GeV}/c$ in both centrality classes, and disfavour below 2 GeV/c
- SHMc model significantly underestimates the data over the whole p_T range

III p_{T} range in both 0–10% and 30–50% centralities both centrality classes, and disfavour below 2 GeV/c ver the whole p_{T} range

Heavy-flavour transport coefficients

- Compute χ^2 /ndf between data and models to constrain model parameters \bigcirc
- Heavy-quark spatial diffusion coefficient $(2\pi D_s T_c)$ at 155 MeV $\rightarrow 1.5 < 2\pi D_s T_c < 4.5$
 - Imply a charm quark relaxation time : 3–8 fm/c \bigcirc

ALI-DER-499016

- Compute χ^2/ndf between data and models to constrain model parameters \bigcirc
- Heavy-qaurk spatial diffusion coefficient $(2\pi D_s T_s)$ at 155 MeV $\rightarrow 1.5 < 2\pi D_s T_s < 4.5$ \bigcirc
 - Imply a charm quark relaxation time : 3–8 fm/c \checkmark
 - charm quark can be fully thermalized with medium (QGP lifetime $\sim 10 \, \text{fm/c}$) \checkmark

ALI-DER-499016

