COMPASS Results on Pion, Kaon and Unidentified Hadrons Multiplicities from SIDIS on Proton Target

M. Stolarski LIP

On behalf of the COMPASS Collaboration

10 IV 2024

COMPASS at CERN, 2002-2022

M. Stolarski (LIP)

COMPASS Spectrometer 2016

COLLABORATION

- about 210 physicists
- 27 institutes

DETECTOR

- two stage spectrometer
- 60 m length
- about 350 detector planes

BEAM & TARGET

- μ^{\pm} at 160 GeV/c
- Liquid H target, 250 cm
- FEATURES
 - angular acceptance: $\pm 180 \text{ mrad}$
 - track reconstruction:

 $p > 0.5 \,\,{
m GeV}/c$

- identification *h*, *e*, *µ*: calorimeters and muon filters
- identification: π, K, p (RICH)
 p > 2, 9, 18 GeV/c respectively

Motivation

- Fragmentation functions (FF(s), D_q^h) describe parton fragmentation into hadrons
- In Leading Order pQCD D_q^h describes probability density for a quark of flavour q to fragment into a hadron of type h
- The cleanest way to access FFs is in e^+e^- annihilation. However,
 - only sensitive to the sum of $q + ar{q}$ fragmentation
 - flavour separation possibilities are limited
- In the SIDIS, $\mu^{\pm} + p(d)
 ightarrow \mu^{\pm'} + h + X$
 - possibility to separate fragmentation from q and \bar{q}
 - full flavour separation possible
 - FF are convoluted with PDFs
- By studying pp collisions with high p_T hadrons, access to gluon fragmentation functions
- SIDIS data are crucial to understand quark fragmentation process

Multiplicity Measurement

- Fragmentation studies in SIDIS can be done using hadron multiplicity data
- Hadron multiplicities are defined as number of observed hadrons per DIS event
- $\frac{dM^{h}(x,z,Q^{2})}{dz} = \frac{d^{3}\sigma^{h}(x,z,Q^{2})/dxdQ^{2}dz}{d^{2}\sigma^{DIS}(x,Q^{2})/dxdQ^{2}}$
- Experimentally measured hadron multiplicities need to be corrected for e.g.
 - spectrometer acceptance and reconstruction program efficiency
 - RICH efficiency and purity (for π and K)
 - QED radiative effects
 - diffractive vector meson production
- COMPASS already published several articles based on isoscalar target data
 - PLB 764 (2017) 001
 - PLB 767 (2017) 133
 - PRD 97 (2018) 032006
 - PLB 786 (2018) 390
 - PLB 807 (2020) 135600
- Today, preliminary results from the proton target are presented

Radiative Corrections

- Correction due to radiative effects is a multiplicative factor to the multiplicity itself, and can be large, especially at low x and high y
- The DJANGOH programme is used for RC simulations
- It was tested against COMPASS data and the TERAD program
- As an example of the comparison charged tracks transverse momentum squared w.r.t. $\mu,\,\mu'$ and γ^* directions are shown below

Radiative Corrections cont.

- COMPASS was always showing results with and without our estimate for RC
- Thus, new RC results can be easily implemented to older COMPASS multiplicity papers
- Note: according to our present knowledge the data from PLB 764 (2017) 001 (π^{\pm}, h^{\pm}) need correction sometimes above 10%

Data Selection and Kinematic Distributions

- DIS selection:
 - Reconstructed μ and μ ',
 - $Q^2 > 1 \; ({
 m GeV}/c)^2$, $W > 5 \; {
 m GeV}/c^2$,
 - 0.1 < y < 0.7, fraction of beam energy carried by virtual gamma
- Hadron cuts:
 - 0.2 < z < 0.85, fraction of the virtual photon energy carried by a hadron
 - 12 GeV/c 40 GeV/<math>c, $\theta <$ 0.12, |dy/dz| < 0.08, PID cuts
- Analysis is performed in 9 bins of Bjorken x, 5 bins of y and 12 bins of z
- Total sample: unidentified hadrons: 1.7M, π : 1.3M, K: 280k

Multiplicities of Unidentified Hadrons

Multiplicities of π^+

Multiplicities of π^-

Multiplicities of K^+

Multiplicities of K^-

Sum of Pion Multiplicities

- Let $D_{fav,(unf)} = D_q^h$ where q is (not) the valence quark of h
- For proton and isoscalar targets in LO pQCD:
- $\frac{dM^{\pi^+}}{dz} + \frac{M^{\pi^-}}{dz} \approx D_{fav} + D_{unf}$, i.e. results are expected to be very similar
- $D(Q^2, z) \rightarrow$ obtained from multiplicity sum is effectively independent of x

•
$$\mathcal{M}^{\pi^+} + \mathcal{M}^{\pi^-} = \int_{0.2}^{0.85} \left(\frac{dM^{\pi^+}}{dz} + \frac{dM^{\pi^-}}{dz}\right) dz$$

Sum of Kaon Multiplicities

- Contrary to pion case, here $D_s^{K^-}, D_{\bar{s}}^{K^+}$ are dominant, larger than e.g. $D_u^{K^+}$
- Since there are not too many s, s at high x, we should see some turn-on effect related to the increased density of strange quark PDFs at lower x
- Perhaps x values accessed by COMPASS is too low to assure low density of s, \bar{s}

•
$$\mathscr{M}^{K^+} + \mathscr{M}^{K^-} = \int_{0.2}^{0.85} \left(\frac{dM^{K^+}}{dz} + \frac{dM^{K^-}}{dz}\right) dz$$

Multiplicity Ratios K^-/K^+ and \bar{p}/p from Isoscalar Target

- In the multiplicity ratio a lot experimental and theoretical uncertainties cancel
- In LO pQCD one can calculate a lower limit for the ratio

•
$$R_{K}(x, Q^{2}, z) = \frac{dM^{K^{-}}(x, Q^{2}, z)/dz}{dM^{K^{+}}(x, Q^{2}, z)/dz} > \frac{\bar{u} + \bar{d}}{\bar{u} + \bar{d}}$$

• $R_{p}(x, Q^{2}, z) = \frac{dM^{\bar{p}}(x, Q^{2}, z)/dz}{dM^{\bar{p}}(x, Q^{2}, z)/dz} > \frac{\bar{u} + \bar{d}}{\bar{u} + \bar{d}}$

- The lower limits predicted by LO pQCD for R_K and R_p are the same
- Actual value of R_K is expected to be 10-15% higher than R_p because of large D_{str}
- R_{π} suffers from large contamination of decay products of diffractive ρ^0

R_{κ} and $R_{\rm p}$ from Isoscalar Target

- Results published PLB 786 (2018) 390 and PLB 807 (2020) 135600
- At high z, R_K and R_p are found below lower limits expected from pQCD in (N)LO
- Kaon results presented for x < 0.05
- Effect more pronounced for \bar{p}/p and starts at lower z

- SIDIS data are crucial for understanding quark fragmentation into hadrons
- COMPASS already published several papers based on isoscalar data analysis
- Today, results for $h^\pm, \pi^\pm, {\sf K}^\pm$ multiplicities on proton target were shown
- Impact of Radiative Correction is larger than originally anticipated in early isoscalar data analyses
- Analysis is considered as finished paper is in preparation