Combining NNLO QCD corrections with parton showers for Higgs production in bottom-quark fusion

Aparna Sankar In collaboration with C. Biello, M. Wiesemann, G. Zanderighi based on [2402.04025]

MAX-PLANCK-INSTITU FÜR PHYSIK

Technische Universität München

31st International Workshop on Deep Inelastic Scattering

Grenoble, 10 April 2024

- Although it is a subdominant channel, its cross section is large enough.
- Bottom Yukawa coupling: Important due to its enhancement in New Physics models like minimal supersymmetric extensions of the SM
- bbH enters as a background in other Higgs searches (notably HH)
- > Also interesting on how bottom quark is treated

- Although it is a subdominant channel, its cross section is large enough.
- Bottom Yukawa coupling: Important due to its enhancement in New Physics models like minimal supersymmetric extensions of the SM
- bbH enters as a background in other Higgs searches (notably HH)
- > Also interesting on how bottom quark is treated

- Computing higher orders is easier
- The DGLAP evolution resums initial state collinear logs into the bottom PDFs
- Neglecting O(m_b/m_H), it yields **less accurate** description of bottom kinematic distribution

~

- Computing higher orders is easier
- The DGLAP evolution resums initial state collinear logs into the bottom PDFs
- Neglecting O(m_b/m_H), it yields **less accurate** description of bottom kinematic distribution

- Computing **higher orders** is more **difficult** due to higher multiplicity & also due to the massive bottom
- It does not resum possibly large collinear logs
- Mass effects O(m_b/m_H) are present

~

STATE OF THE ART:

N3LO for the total cross section in the 5FS

[Duhr, Dulat, Mistlberger (1904.09990)]

- N3LO matched to NLO in the 4FS by a prescription, namely, FONLL [Duhr, Dulat, Hirschi, Mistlberger (2004.04752)] [Forte, Napoletano, Ubiali [1508.01529, (1607.00389)]
 NLO+PS in the 4FS [Wiesemann, Frederix, Frixione, Hirschi, Maltoni, Torrielli (1409.5301)]
- NLO-QCD (matched to parton showers) combined with NLO-EW in the 4FS

[Pagani, Shao, Zaro (2005.10277)]

STATE OF THE ART:

N3LO for the total cross section in the 5FS

[Duhr, Dulat, Mistlberger (1904.09990)]

- N3LO matched to NLO in the 4FS by a prescription, namely, FONLL [Duhr, Dulat, Hirschi, Mistlberger (2004.04752)] [Forte, Napoletano, Ubiali [1508.01529, (1607.00389)]
 NLO+PS in the 4FS [Wiesemann, Frederix, Frixione, Hirschi, Maltoni, Torrielli (1409.5301)]
- NLO-QCD (matched to parton showers) combined with NLO-EW in the 4FS

[Pagani, Shao, Zaro (2005.10277)]

THIS TALK:

We discuss the **first fully-differential** calculation of **NNLO QCD** matched to **parton showers** (**NNLO+PS**) for **bbH** in the **5FS**.

NNLO+PS accuracy

- **MiNLO'** + reweighting
- Geneva
- UNNLOPS

[Hamilton, Nason, Zanderighi (1212.4504)] [Alioli, Bauer, Berggren, Tackmann,Walsh, Zuberi (1211.7049)] [Höche, Prestel (1507.05325)]

NNLO+PS accuracy

- **MiNLO'** + reweighting
- Geneva
- UNNLOPS

[Hamilton, Nason, Zanderighi (1212.4504)] [Alioli, Bauer, Berggren, Tackmann,Walsh, Zuberi (1211.7049)] [Höche, Prestel (1507.05325)]

MiNNLO _{PS} An extension					of the MiNLO' procedure		
	F	F+J	F+JJ		F	F+J	F+JJ
				FJ@MiNLO'	NLO	NLO	LO
F@MiNNLO _{PS}	NNLO	NLO	LO	·		•	•
[Monni, Nason, Re, Wisemann, Zanderighi (1908.06987)]							
 ✓ No c ✓ No u ✓ Leac ✓ Num 	 I I I [Monni, Nason, Re, Wisemann, Zanderighi (1908.06987)] No computationally intense reweighting No unphysical merging scale Leading-log (LL) accuracy of the shower preserved Numerically efficient 						

- > The matching to the parton shower is performed according to the **POWHEG** method [P. Nason (0409146)]
- The **POWHEG** approach: we generate the **hardest radiation** (i.e. the largest p_T) **first** with **NLO** accuracy, then attaching a **parton shower** with **softer** emissions.

- > The matching to the parton shower is performed according to the **POWHEG** method [P. Nason (0409146)]
- The **POWHEG** approach: we generate the **hardest radiation** (i.e. the largest p_T) **first** with **NLO** accuracy, then attaching a **parton shower** with **softer** emissions.

→ **Minnlo**_{Ps} in **POWHEG** framework: we start from a differential description of the production of the colour singlet and a jet ($pp \rightarrow F + J$).

$$d\sigma_{F}^{MiNNLO_{PS}} = d\Phi_{FJ}\bar{B}^{MiNNLO_{PS}} \times \left\{ \Delta_{pwg}(\Lambda_{pwg}) + \int d\Phi_{rad}\Delta_{pwg}(p_{T,rad})\frac{R_{FJ}}{B_{FJ}} \right\}$$
Describes the generation of the 1st radiation
Describes the generation of the 2nd radiation
according to the **POWHEG** method

Phenomenology with MiNNLO_{PS}

Phenomenology of bbH

Comparison of the total inclusive cross section of **MiNLO'** and **MiNNLO**_{PS} predictions with fixedorder results at NLO and NNLO obtained with the public code **SusHi** [with μ_R and μ_F set to m_H]

[Harlander, Liebler, Mantler (1212.3249)]

Process	NLO (SUSHI)	NNLO (SUSHI)	MINLO'	MINNLO _{PS}
$b\bar{b} ightarrow H$	$0.646(0)^{+10.4\%}_{-10.9\%}{ m pb}$	$0.518(2)^{+7.2\%}_{-7.5\%}{ m pb}$	$0.571(1)^{+17.4\%}_{-22.7\%} \mathrm{pb}$	$0.509(8)^{+2.9\%}_{-5.3\%}$ pb

Phenomenology of bbH

Comparison of the total inclusive cross section of **MiNLO'** and **MiNNLO**_{PS} predictions with fixedorder results at NLO and NNLO obtained with the public code **SusHi** [with μ_R and μ_F set to m_H]

[Harlander, Liebler, Mantler (1212.3249)]

Process	NLO (SUSHI)	NNLO (SUSHI)	MINLO'	MINNLO _{PS}
$b\bar{b} ightarrow H$	$0.646(0)^{+10.4\%}_{-10.9\%}{ m pb}$	$0.518(2)^{+7.2\%}_{-7.5\%}{ m pb}$	$0.571(1)^{+17.4\%}_{-22.7\%} \mathrm{pb}$	$0.509(8)^{+2.9\%}_{-5.3\%} \mathrm{pb}$

- NNLO QCD corrections reduce cross section by > 10%
- Scale uncertainities significantly reduced with NNLO QCD corrections
- Our MiNNLO_{PS} predictions are in agreement with NNLO QCD cross section within quoted uncertainties

Les Houches level (LHE)

Rapidity distribution of the Higgs boson (y_H)

PY8 level

NNLO [Mondini, Williams (2102.05487)]

Rapidity distribution of the Higgs boson (y_H)

PY8 level

- A good agreement, both in terms of normalization and in terms of shape, between the two central predictions.
- The bands of MiNNLO_{PS} result are more symmetric & slightly smaller than the NNLO ones.
- Apart from that, impact of the parton shower is very moderate.

NNLO [Mondini, Williams (2102.05487)]

NNLO+NNLL [Harlander, Tripathi, Wiesemann (1403.7196)]

Parton showering effects

At large p_{T,H}: MiNNLO_{PS} shifted 10% up, well within the given scaleuncertainty bands.

NNLO+NNLL [Harlander, Tripathi, Wiesemann (1403.7196)]

Parton showering effects

At large p_{T,H}: MiNNLO_{PS} shifted 10% up, well within the given scaleuncertainty bands.

۶

At small p_{T,H}: slightly worsen the agreement. MiNNLO_{PS} uncertainities are underestimated.

Require additional variations within the shower settings.

NNLO+NNLL [Harlander, Tripathi, Wiesemann (1403.7196)]

NNLO+NNLL [Harlander, Tripathi, Wiesemann (1403.7196)]

Parton showering effects

- At large p_{T,H}: MiNNLO_{PS} shifted 10% up, well within the given scaleuncertainty bands.
 - At small p_{T,H}: slightly worsen the agreement. MiNNLO_{PS} uncertainities are underestimated.

Require additional variations within the shower settings.

 Massless approximation misses potentially relevant mass effects at small p_T, need to combine with for massive 4FS calculation.

bbH in 4FS with $MiNNLO_{PS}$

- Start from the **POWHEG** *Hbbj* generator
- Produce NNLO+PS predictions using the framework of MiNNLO_{PS}

Mazzitelli, Wiesemann [in progress]

bbH in 4FS with $MiNNLO_{PS}$

- Start from the **POWHEG** *Hbbj* generator
- Produce NNLO+PS predictions using the framework of MiNNLO_{PS}

Mazzitelli, Wiesemann [in progress]

The double virtual correction for a massive bottom pair and Higgs production is not known: approximate it with the massification procedure

$$\mathcal{A}^{(2)} = \log(m_b) \text{-terms} + \text{const.} + \mathcal{O}\left(\frac{m_b}{Q}\right) \qquad \text{Mitov, Moch [0612149]}$$

$$\mathcal{F}^{(2)} \mathcal{A}^{(0)}_{m_b=0} + \mathcal{F}^{(1)} \mathcal{A}^{(1)}_{m_b=0} + \mathcal{F}^{(0)} \mathcal{A}^{(2)}_{m_b=0} \qquad \text{Badger, Hartanto, Kryś, Zoia [2107.14733]}$$

bbH: scheme comparison

Summary & Outlook

- → **First presentation** of **NNLO+PS** computation for $b\bar{b} \rightarrow H$ (5FS) production at the LHC by using **MiNNLO**_{PS} method.
- Extensive validation against fixed-order results from literature, showcasing consistency in relevant kinematical regions.
- > Initial step towards a complete NNLO+PS description of $b\bar{b}H$ production.
- Future directions include the completion of 4FS bbH with massive bottom quarks and the combination of full 4FS–5FS at NNLO+PS accuracy.

Summary & Outlook

- First presentation of NNLO+PS computation for $b\bar{b} \rightarrow H$ (5FS) production at the LHC by using MiNNLO_{PS} method.
- Extensive validation against fixed-order results from literature, showcasing consistency in relevant kinematical regions.
- > Initial step towards a complete NNLO+PS description of $b\bar{b}H$ production.
- Future directions include the completion of 4FS bbH with massive bottom quarks and the combination of full 4FS–5FS at NNLO+PS accuracy.

THANK YOU !

Backup slides

$Minnlo_{PS}$ in a Nutshell

Minnlo_{PS} in **POWHEG** framework: we start from a differential description of the production of the colour singlet and a jet ($pp \rightarrow F + J$) with phase space Φ_{FJ} .

POWHEG sudakov form factor

$$d\sigma_{\rm F}^{\rm MiNNLO_{\rm PS}} = d\Phi_{\rm FJ}\bar{\rm B}^{\rm MiNNLO_{\rm PS}} \times \left\{ \Delta_{\rm pwg}(\Lambda_{\rm pwg}) + \int d\Phi_{\rm rad}\Delta_{\rm pwg}(p_{\rm T,rad}) \frac{R_{\rm FJ}}{B_{\rm FJ}} \right\}$$

Describes the generation of the 1st radiation

 Φ_{rad} : The phase space of the 2nd radiation.

p_{T,rad} : Transverse momentum of the 2nd radiation.

B_{FJ} & **R**_{FJ} are the squared tree-level matrix elements for **FJ** & **FJJ** production, respectively.

Describes the generation of the 2^{nd} radiation according to the **POWHEG** method above the infrared cutoff $\Lambda_{pwg} = 0.89$ GeV

Phenomenology of bbH - Setup

Inputs:

- Center-of-mass energy: **13 TeV** at LHC.
- Higgs boson mass (mH): **125 GeV**, FH (decay width): 0 GeV.
- PDFs: NNPDF40_nnlo_as_01180 with 5 active flavours.
- Central μ R and μ F scales set via **MiNNLO**_{PS} method [$\mu_R = \mu_F \sim p_T$].
- Yukawa coupling renormalized in MS scheme [Yb(mb=4.18 GeV) -> Yb(mH) = 2.79].

Scale Settings and Uncertainties:

• Scale uncertainities assessed through customary **7-point** μ_R and μ_F variation.

Matching to Parton Shower:

• Predictions matched to parton shower using **Pythia8** with **leading-log (LL)** accuracy.

Exclusion of Effects:

• Hadronization, multi-parton interactions (MPI), and QED radiation effects are switched off.

Comparison of MiNLO' & MINNLO_{PS}

the Higgs boson ($p_{T,H}$) 10² dơ/dp_{T,H} [fb/GeV] pp->H(bb)@LHC 13 TeV MiNLO' (PY8) 10¹ MiNNLO_{PS} (PY8) 10⁰ 10⁻¹ 10⁻² 10⁻³ do/dominlo' (PY8) 1.2 0.8 50 200 250 100 150 300 Ω рт.н

Transverse-momentum spectrum of

Rapidity distribution of the Higgs (y_H)

PY8 level

- At small p_T, MiNNLO_{PS}
 significantly dampens
 distributions, reduces scale
 uncertainties.
- At large p_T, MiNLO' &
 MiNNLO_{PS} predictions coincide, both NLO accurate.
- y_H distribution: MiNNLO_{PS} introduces a flat 14% negative correction, reduces scale uncertainties.

Les Houches level (LHE)

At high p_{т,н}: they coincide again

At small $p_{T,H}$: Acceptable agreement

NNLO+NNLL [Harlander, Tripathi, Wiesemann (1403.7196)]

Comparison of MiNLO' & MINNLOPS

Rapidity distribution of the leading jet (y_{j1})

Rapidity difference between the Higgs boson &

- Very similar shapes for MiNLO' & MiNNLO_{PS} results
- MiNLO' & MiNNLO_{PS}: fully consistent within the quoted scale uncertainties

Comparison of MiNLO' & MINNLO_{PS}

FONLL

• FONLL matches the flavour schemes $\sigma^{FONNL} = \sigma^{4FS} + \sigma^{5FS} - \text{double couting}.$

For a consistent subtraction, we have to express the two cross-sections in terms of the same α_s and PDFs.

 Currently, the flavour matching for bbH is performed at

 $FONNL_C := N^3 LO_{5FS} \oplus NLO_{4FS}$.