Recent heavy-flavour results from ATLAS

Semen Turchikhin on behalf of ATLAS collaboration

Università degli studi di Genova Istituto Nazionale di Fisica Nucleare, Sezione di Genova CERN

31st International Workshop on Deep Inelastic Scattering and Related Subjects Grenoble, France 8–12 April 2024

Outline

► ATLAS B-physics programme covers a wide range of studies:

- Open heavy-flavour and heavy quarkonium production
- Spectroscopy (including exotic states)
- Decays (CPV, rare and semi-rare decays etc.)
- Competitive when (mostly) muon final states are involved

In this talk:

- Observation of structures in di-charmonium mass spectrum EPJC 84 (2024) 169 C
- Study of $\Upsilon + 2\mu$ mass spectrum ATLAS-CONF-2023-041
- Measurement of J/ψ and $\psi(2S)$ production at $\sqrt{s} = 13 \text{ TeV} \text{PRL } 131 (2023) 151902$
- Measurement of $B_s^0 \rightarrow \mu^+ \mu^-$ effective lifetime JHEP 09 (2023) 199

ATLAS detector and trigger for B-physics

- ► Track reconstruction covers |η| < 2.5, p_T > 500 MeV
- Muons reconstructed from p_T > 2.5 GeV

- Two-level trigger system: hardware L1 and software HLT
- Di-muon triggers most relevant for B-physics
 - Typical p_T thresholds for two muons: 4–6 GeV

Structures in di-charmonium spectrum

- ► LHCb claimed (arXiv:2006.16957 \checkmark) observation of a new X(6900) structure in $pp \rightarrow J/\psi J/\psi \rightarrow 4\mu$ mass spectrum
 - consistent with predictions for $T_{cc\bar{c}\bar{c}}$ tetraquarks
 - ▶ e.g. in diquark+antidiquark model (EPJC 80 (2020) 1004 🗹, PLB 811 (2020) 135952 🗹)
 - non-tetraquark interpretations also possible
 - e.g. in Pomeron exchanges in near-threshold $J/\psi J/\psi$ scattering (PLB 824 (2022) 136794 \checkmark)
 - broad lower-mass structure can be e.g. a mixture of multiple ccccc states or feed-down from their decays via heavier charmonia
- The observation then confirmed by ATLAS (PRL 131 (2023) 151902 3 and CMS (PRL 132 (2024) 111901 3)

Assuming no interference:

$$\begin{split} m[X(6900)] &= 6905 \pm 11 \pm 7 \, \text{MeV}/c^2 \\ \Gamma[X(6900)] &= 80 \pm 19 \pm 33 \, \text{MeV}, \end{split}$$

With NRSPS interference:

 $m[X(6900)] = 6886 \pm 11 \pm 11 \,\text{MeV}/c^2$ $\Gamma[X(6900)] = 168 \pm 33 \pm 69 \,\text{MeV}.$

DIS2024, 8-12 Apr 2024

Low-mass 4-muon resonances

PRL 131 (2023) 151902

- Main background: SPS and DPS prompt charmonium pair production
 - From MC, corrected in control regions
- ► Other: $b\bar{b} \rightarrow J/\psi J/\psi X$, fake J/ψ , feed-down from TQ decaying to heavier charmonia

Two fit models similar to those used by LHCb:

- Model A: 3 interfering BW resonances
- Model B: 1 BW interfering with SPS background, 1 BW standalone
- Significance far exceeds 5σ

di- J/ψ	model A	model B
m_0	$6.41 \pm 0.08^{+0.08}_{-0.03}$	$6.65 \pm 0.02^{+0.03}_{-0.02}$
Γ_0	$0.59 \pm 0.35^{+0.12}_{-0.20}$	$0.44 \pm 0.05^{+0.06}_{-0.05}$
m_1	$6.63 \pm 0.05^{+0.08}_{-0.01}$	
Γ_1	$0.35 \pm 0.11^{+0.11}_{-0.04}$	
m_2	$6.86 \pm 0.03^{+0.01}_{-0.02}$	$6.91 \pm 0.01 \pm 0.01$
Γ_2	$0.11 \pm 0.05^{+0.02}_{-0.01}$	$0.15 \pm 0.03 \pm 0.01$
$\Delta s/s$	$\pm 5.1\%^{+8.1\%}_{-8.0\%}$	_

- Model α: same 3 resonances decaying to *J*/ψ + ψ(2*S*) and a 4th standalone BW resonance - 4.7σ
 - parameters fixed from di- J/ψ fit
- Model β : a single BW resonance 4.3 σ
- 3σ significance of the 7.2 GeV resonance in model α

$J/\psi + \psi(2S)$	model α	model β
m ₃ or m	$7.22 \pm 0.03^{+0.01}_{-0.03}$	$6.96 \pm 0.05 \pm 0.03$
Γ_3 or Γ	$0.09 \pm 0.06^{+0.06}_{-0.03}$	$0.51 \pm 0.17 ^{+0.11}_{-0.10}$
$\Delta s/s$	$\pm 21\% \pm 14\%$	$\pm 20\% \pm 12\%$

- X(6900) reliably confirmed with consistent parameters and significance far above 5σ
 CMS is also consistent
- Evidence for another resonance also hinted in LHCb results near 7.2–7.3 GeV in $J/\psi + \psi(2S)$ at level of 3–4 σ
 - CMS reported an evidence in di- J/ψ channel
- The lowest-mass structure nature is less certain
 - Could also result from other effects, e.g. a more complicated mixture of states or feed-down from higher di-charmonium resonances

Search for $\Upsilon + 2\mu$ resonances in ATLAS

ATLAS-CONF-2023-041

- Study $\Upsilon(\rightarrow \mu^+ \mu^-) + \mu^+ \mu^-$ mass spectrum
- 8 TeV data analysis: an excess at $m_{4\mu} = 18 \text{ GeV}$
 - global significance 1.9–5.4σ depending on selection choice, survives extensive validation
- 13 TeV data: much less significant structure in 2015–17 data and no signal in 2018 (with tighter trigger)
 - MC and data-driven studies confirm reduction of sensitivity in Run-2 data
 - ▶ 13 TeV result is in tension with 8 TeV at 2.7σ level

To be further studied with Run-3

DIS2024, 8-12 Apr 2024

Semen Turchikhin Università di Genova, INFN Genova, CERN

PRL 131 (2023) 151902

J/ψ and $\psi(2S)$ production measurement

- Heavy quarkonium is a unique probe for our understanding of strong interactions
- ► Two production mechanisms:
 - Prompt in pp interaction or feed-down from heavier states
 - Non-prompt from b hadron decays
 - Distinguished by 2D fit of dimuon mass and pseudo-proper lifetime
- pQCD relatively successful for non-prompt production description, but not quite for prompt
- Full Run-2 analysis uses different trigger strategy for low and high p_T:
 - ▶ di-muon trigger for 8 < p_T(J/ψ) < 60 GeV (4 GeV muon threshold in 2015)</p>
 - ► single-muon trigger for p_T(J/ψ) > 60 GeV (50 GeV muon threshold)

Results

- Widest p_T range achieved so far: 8–360 GeV for J/ψ (up to 140 GeV for $\psi(2S)$)
 - 9 (6) orders of magnitude variation of x-section for J/ψ (ψ (2S))
- Non-prompt fraction increases at low p_{T} , plateau for higher
- Good agreement with other experiments withing overlapping kinematic ranges

Comparison to predictions

- Prompt: much harder spectra predicted, room for improvement in all models
- Non-prompt: generally better description, although still tend to over-estimate high p_T

- Rare decay, ${\cal B}(B^0_s o \mu^+ \mu^-) = (3.01 \pm 0.35) imes 10^{-9}$
- ▶ In SM, only CP-odd $B^0_{s,H}$ state contributes to $B^0_s \to \mu^+ \mu^-$ decay $(A_{\mu\mu} = +1)$
- ► Certain BSM scenarios allow CP-even $B^0_{s,L}$ contribution $(A_{\mu\mu} \in [-1, +1])$

$$\tau_{\mu\mu}^{\text{eff}} = \frac{\tau_{B_{s}^{0}}}{1 - y^{2}} \left[\frac{1 + 2y A_{\mu\mu} + y^{2}}{1 + y A_{\mu\mu}} \right], \qquad y = \frac{\Gamma_{s,L} - \Gamma_{s,H}}{\Gamma_{s}}, \qquad A_{\mu\mu} = \frac{\Gamma(B_{s,H}^{0} \to \mu^{+}\mu^{-}) - \Gamma(B_{s,L}^{0} \to \mu^{+}\mu^{-})}{\Gamma(B_{s,L}^{0} \to \mu^{+}\mu^{-}) + \Gamma(B_{s,L}^{0} \to \mu^{+}\mu^{-})}$$

- Large lifetime difference $\tau_{B_{s,H}^0} \tau_{B_{s,L}^0} = 1.624 1.431 = 0.193 \, ps$ allows sensitivity to $B_{s,L}^0$ contribution
- ▶ Complementary observable to $\mathcal{B}(B^0_s \to \mu^+ \mu^-)$ different set of effective operators
- ▶ First measurement in ATLAS done with 2015–2016 data

Analysis strategy

- 1. Unbinned ML fit to $m(\mu^+\mu^-)$ distribution
 - ▶ Main backgrounds: continuum di-muons, partially reconstructed *B* decays
 - ► Signal yield: 58 ± 13 events
- 2. Extraction of the signal proper decay time distribution with sPlot
- 3. χ^2 fit of that distribution with MC templates for $au_{\mu\mu}$
- Dominant systematics: signal MC modelling
 - ▶ evaluated using $B^+ \rightarrow J/\psi(\rightarrow \mu^+ \mu^-)K^+$ reference channel data/MC comparison

Results

- Stat. uncertainty evaluated with Neyman construction using toy MC fits
- Measured value:

 $au_{\mu\mu} = 0.99^{+0.42}_{-0.07}(ext{stat.}) \pm 0.17(ext{syst.})\, ext{ps}$

 $\blacktriangleright~$ Consistent with SM $\tau_{B^0_{s,H}} = 1.624 \pm 0.009\,\mathrm{ps}$

- Consistent with other experiments
 - Competitive precision for the similar-size dataset

13 / 14

► Full Run-2 dataset analysis underway

ATLAS has released a set of competitive results in various areas of B-physics

- Study of the exotics in 4-muon final states
- ▶ The most comprehensive measurement of charmonium production so far
- $\blacktriangleright~B^0_s \rightarrow \mu^+\mu^-$ rare decay lifetime measurement

Stay tuned for further results!

ATLAS B-physics public result page:

ATLAS: https://twiki.cern.ch/twiki/bin/view/AtlasPublic/BPhysPublicResults C

Backup slides

ATLAS B-physics trigger in Run-3

Comparison to predictions $\psi(2S)$

 NLO NRQCD with *k_T*-factorisation: based on PEGAUS generator (EPJC 80 (2020) 330 ?)

 ICEM: Improved Colour Evaporation Model

ATLAS

 $pp \ \sqrt{s} = 13 \ \text{TeV} \qquad \int L dt = \frac{2.6 \ \text{fb}^{-1}}{140 \ \text{fb}^{-1}} \ p_{\text{T}} < 60 \ \text{GeV} \\ 0 \le |y| < 0.75 \qquad \text{Non-prompt } \psi(2S)$

Charmonium production systematics

$B_s^0 ightarrow \mu^+ \mu^-$ lifetime systematics

Uncertainty source	$\Delta \tau^{\rm Obs}_{\mu\mu}$ [fs]
Data - MC discrepancies	134
SSSV lifetime model	60
Combinatorial lifetime model	56
B kinematic reweighting	55
B isolation reweighting	32
SSSV mass model	22
B_d background	16
Fit bias lifetime dependency and B_s^0 eigenstates admixture	15
Combinatorial mass model	14
Pileup reweighting	13
B_c background	10
Muon Δ_{η} correction	6
$B \rightarrow hh'$ background	3
Muon reconstruction SF reweighting	2
Semileptonic background	2
Trigger reweighting	1
Total	174

_