Di-jet production and signatures of collectivity in multiparticle photoproduction in UPC with the ATLAS detector

Martin Spousta on behalf of the ATLAS Collaboration

> Charles University Prague

31st International Workshop on Deep Inelastic Scattering Grenoble, 8-12 April 2024

- Boosted protons / nuclei are **source of photons** of small virtuality (Q²<1/R²=10⁻³GeV²).
- Electromagnetic interactions **dominate** at large impact parameters => with Pb+Pb, the LHC turned into photon-photon collider.
- In this talk: study of dijets and collectivity in UPC.

Photo-nuclear jet production: motivation

- Mapping nuclear PDFs in wide range of Q², x space possible at the LHC.
- Large part of phase space not covered.

Photo-nuclear jet production: motivation

- Mapping nuclear PDFs in wide range of Q², x space possible at the LHC.
- Large part of phase space not covered.
- Photon-nuclear dijet measurements:
 - Can cover intermediate
 Q² region and large
 span of x.
 - Clean, DIS-like process

Photo-nuclear interactions

- Direct: photon directly couples to a parton.
- Resolved: photon resolved into hadronic state.

- Sum of rapidity gaps
- Signal from neutrons in Zero Degree Calorimeter

Event selection: rapidity gaps

- $\Sigma_{\gamma} \Delta \eta_{gap} > 2.5 \dots$ photon-nuclear events (large gaps and low N_{ch})
- $\Sigma_{\gamma} \Delta \eta_{gap} < 2.5 \dots$ ordinary Pb+Pb events with dijets
- (Δη_A < 3)

Event selection: ZDC

- Observed uncorrected ZDC energy in the Pb-going side
- Requiring signal from at least one neutron.

Observables $2 \rightarrow 2$ scattering limit: $H_{\rm T} \equiv \sum p_{\rm T\,i}$ iet fraction of beam iet momentum carried $x_{\rm A} \equiv \frac{m_{\rm jets}}{\sqrt{2}} e^{-y_{\rm jets}}$ by partons in nucleus (in "direct" $x_A \sim x$) fraction of beam ... where $\frac{m_{\rm jets}}{2}e^{+y_{\rm jets}}$ momentum carried $y_{\text{jets}} \equiv \frac{1}{2} \ln \left(\frac{\sum_{i} E_{i} + \sum_{i} p_{z_{i}}}{\sum_{i} E_{i} - \sum_{i} n} \right)$ Z_{γ} by partons in photon (in "direct" $z_v \sim DIS y$) $m_{\text{jets}} \equiv \left| \left(\sum_{i} E_{i} \right)^{2} - \left| \sum_{i} \vec{p}_{i} \right|^{2} \right|^{1}$ $d^3\sigma$ triple differential ... i goes through $dH_T dx_A dz_\gamma$ cross-section all the jets corrected to

particle level

Emitting nucleus break up

• Selecting events with jets => selecting events with highest energy photons => bias towards low impact parameters as $E_y \sim 1/b =>$ high probability for the nucleus to **break up due to additional photon** exchanges.

Emitting nucleus break up

• Selecting events with jets => selecting events with highest energy photons => bias towards low impact parameters as $E_y \sim 1/b =>$ high probability for the nucleus to **break up due to additional photon** exchanges.

• **PYTHIA 8 corrected** for these break up processes (done using calculations with input from STARLIGHT MC).

Results: narrow x_A region

- z_y distributions for a **narrow** \mathbf{x}_A region of large x_A (0.015 < x_A < 0.2).
- Primary sensitivity to photon flux.
- Results can constrain theory calculations of photon flux and nuclear break-up probability.

Results: scanning trough z_{γ}

- Low photon energy (0.004 < z_{γ} < 0.008) – access to **high x**_A.
- Higher photon energy (0.008 < z_y < 0.015)
 – entering lower x_A region of shadowing.
- The highest photon energy (0.015 < z_{γ} < 0.027) – access to the **lowest x**_A.
- Data **consistent** with theory (PYTHIA8 + nCTEQ PDFs scaled for nuclear break-up).

Results: scanning trough z_{γ}

- Low photon energy (0.004 < z_{γ} < 0.008) – access to **high x**_A.
- Higher photon energy ($0.008 < z_y < 0.015$) – entering lower x_A region of **shadowing**.
- The highest photon energy (0.015 < z_y < 0.027) – access to the **lowest x**_A.
- Data **consistent** with theory (PYTHIA8 + nCTEQ PDFs scaled for nuclear break-up).

15

Results: scanning trough z_{γ}

- Low photon energy (0.004 < z_{γ} < 0.008) – access to **high x**_A.
- Higher photon energy ($0.008 < z_y < 0.015$) – entering lower x_A region of **shadowing**.
- The highest photon energy (0.015 < z_y < 0.027) – access to the **lowest x**_A.
- Data **consistent** with theory (PYTHIA8 + nCTEQ PDFs scaled for nuclear break-up).

Results: scanning trough z_γ

- Low photon energy (0.004 < z_{γ} < 0.008) – access to **high x**_A.
- Higher photon energy ($0.008 < z_y < 0.015$) – entering lower x_A region of **shadowing**.
- The highest photon energy (0.015 < z_y < 0.027) – access to the **lowest x**_A.
- Data **consistent** with theory (PYTHIA8 + nCTEQ PDFs scaled for nuclear break-up).

OnOn: Dijet production with no nuclear breakup

Collectivity in pp and p+Pb

- In high multiplicity p+Pb and p+p collisions, long **range two particle correlations** measured.
 - They can be quantified by Fourier expansion in azimuth => V_n Fourier coefficients.
 - They can be understood as resulting from collective behavior of nuclear matter.

• Can we see such correlations in y+Pb events?

Collectivity in UPC events: v₂, v₃

- Significant v_2 observed, systematically smaller than in pp and p+Pb.
- Theory predicted v_2 based on hadronic fluctuation in γ interacting with Pb.
- •Non-zero v₃ seen as well. No significant multiplicity dependence seen.

Collectivity in UPC events: v₂, v₃

• Significant v_2 observed, systematically smaller than in pp and p+Pb.

• Theory predicted v_2 based on hadronic fluctuation in γ interacting with Pb.

• Non-zero v_3 seen as well. No significant multiplicity dependence seen.

UPC Charged hadron yields

• Theory (3+1D hydrodynamics)* predicts that $v_2(p+Pb) > v_2(\gamma+Pb)$ comes predominantly from the difference in the longitudinal structure of the collision, but the two system should have the **same radial flow** => should have the **same <p_T>**

=> Measurement of charged hadron yield

- Charged hadron yields (p_T,η) measured and compared to **DPMJET-III** model and p+Pb data also to:
 - Constrain photon energy distribution
 - Constrain particle production modeling

Elliptic flow

UPC Charged hadron yields vs η

- Yields are **symmetric** in low multiplicity **p+Pb collisions** (low multiplicity events are pp-like)
- Yields are highly **asymmetric** in γ +Pb events ($E_{\gamma} < E_{Pb}$)

UPC Charged hadron $< p_T > vs N_{ch}$

- In lead-going side $< p_T > comparable$ between p+Pb and y+Pb.
- In photon-going side <p_T> much lower in y+Pb may be connected with the radial flow.

UPC Charged hadron $< p_T > vs N_{ch}$

 Data in y+Pb compared to DPMJET-III which under-predicts lead-going rapidity region but describes well the photon-going region.

Summary

- Three measurements with UPC events from 5.02 TeV Pb+Pb collisions presented.
- Photonuclear dijet production (ATLAS-CONF-2022-021):
 - Studies nPDF in unexplored kinematic region.
 - Constrains photon flux modeling.
 - Shows a need for better understanding the nuclear breakup process as well as dijet production in events with no nuclear breakup.
- Collectivity in UPC events (PRC 104 (2021) 014903):
 - Significant v_2 and non-zero v_3 .
- Charged hadron yields in UPC events (ATLAS-CONF-2023-059):
 - Measured to better understand the collectivity in UPC.
 - To constrain E_{γ} distributions and particle production modeling.

This work was supported by ERC-CZ grant LL2316

Backup slides

Emitting nucleus break up

Observables

- $\bullet z_{\gamma}$ and x_A highly correlated
- H_T not correlated with x_A or z_y
- Final observable: triple differential cross-section corrected to particle level:

$$\frac{\mathrm{d}^{3}\sigma}{\mathrm{d}H_{\mathrm{T}}\mathrm{d}x_{\mathrm{A}}\mathrm{d}z_{\gamma}} \equiv \frac{\Delta\sigma^{\mathrm{unf}}}{\Delta H_{\mathrm{T}}\Delta x_{\mathrm{A}}\Delta z_{\gamma}}$$

 $x_{\rm A} \equiv \frac{m_{\rm jets}}{\sqrt{s}} e^{-y_{\rm jets}}$

$$z_{\gamma} \equiv \frac{m_{\rm jets}}{\sqrt{s}} e^{+\mathcal{Y}_{\rm jets}}$$

Collectivity in UPC events

- γ +Pb collisions, two particle correlations studied as a function of $\Delta \eta$ and $\Delta \Phi$ as in other systems.
- Template method used to extract flow coefficients, non-flow contribution subtracted using information from low multiplicity events.

- Clear correlation between photon energy and charged particle yields.
- Measurement should improve understanding the E_y distribution.