Reconstructing, classifying and calibrating hadronic objects in ATLAS

Pierre-Antoine Delsart DIS 2024

Hadronic jets at the LHC

Hadronic jets

- QCD phenomena resulting of a parton emission
- Ubiquitous in LHC analyses

- Continuous work in ATLAS to optimize
 - Energy and Mass scale and resolution
 - Uncertainties on E and Mass
- Discrimination between different types of jets
 24-04-08
 Eur. Phys. J. C 81 (2021) 689
 P-A Delsart

Hadronic jets at the LHC Hadronic jets QCD phenomena resulting of a parton emission Ubiquitous in This talk: selection of recent published works & **Continuous** wor results Energy and M Uncertainties on E and Mass Discrimination between different types of jets 24-04-08 P-A Delsart

Hadronic flow reconstruction in ATLAS

- Flow of hadronic particles == constituents of jets
 - set of 4-vectors
- 2 possible type of primary signals :
- Calorimeter clusters
 - 3D cell clustering using ATLAS's 7 layers depth
 - Good reconstructed energy (E) at high p_T
 - limited granularity
- Inner Detector tracks
 - Excellent spatial resolution
 - Good reconstructed p_T at lower p_T
 - Limited to charged particles

Hadronic jet reconstruction in ATLAS

- Jet = group of constituents
- groups formed by a Jet algorithm with a distance parameter R
 - ex: "anti-k⊤"
- ATLAS uses
 - R=0.4 : "standard" jets
 - R=1.0 : "large-R" jets to collect boosted hadronic decays of heavy particles (W/Z, top, Higgs,...)

Calorimeter cluster classification and **calibration** with Machine Learning (ML)

2 types of studies :

- "Low level" using calorimeter cells information
 - single π simulations,
 - proof of concepts using advanced ML (CNN, Graph NN, "point clouds")
 - promising results : ATL-PHYS-PUB-2020-018 and JETM-2022-002
- "Higher level" using only cluster variables \rightarrow next slides

Higher-level cluster calibration with DNN

- Can ML using "engineered" **cluster-level** variables perform as well as ML using full cell info ?
- Train DNN to predict response w.r.t deposited E
 - Using simulated clusters inside Jet in realistic multijet events
 - Based on 15 chosen variables
 - Also testing Bayesian NN

Category LCW Comment Symbol $E_{\rm clus}^{\rm EM}$ Signal at the electromagnetic energy scale (A) kinematics yes y_{clus}^{EM} Rapidity at the electromagnetic energy scale (B) yes $\zeta_{\rm clus}^{\rm EM}$ signal strength no Signal significance (E) timing Signal timing (C,D,F) t_{clus} no Variance of t_{cell} distribution (D,F) $Var_{clus}(t_{cell})$ no Distance of centre-of-gravity from calorimeter front face (C,D) shower depth $\lambda_{\rm clus}$ ves shower shape $|\vec{c}_{\rm clus}|$ no Distance of centre-of-gravity from nominal vertex (C,D) compactness Fraction of energy in electromagnetic calorimeter (C) femc no Cluster signal density measure (C,D) $\langle \rho_{\rm cell} \rangle$ yes $\langle \mathfrak{m}^2_{\text{long}} \rangle$ Energy dispersion along main cluster axis (C) no $\langle \mathfrak{m}_{lat}^2 \rangle$ Energy dispersion perpendicular to main cluster axis (C) no $p_T D$ Signal compactness measure (C,D) no topology fiso Cluster isolation measure (F) no $N_{\rm PV}$ Number of reconstructed primary vertices (F) pile-up no Number of interactions per bunch crossing (F) μ no

ATL-PHYS-PUB-2023-019

Higher-level cluster calibration with DNN

P-A Delsart

- Compared to no (EM) and "standard hadron calibration" (LCW see Eur. Phys. J. C 77 (2017) 490)
- Very encouraging results with improved E response and resolution

24-04-08

Measuring hadronic response in data

Measuring hadronic response

- Select $W \rightarrow \tau \nu_{\tau} \rightarrow \pi \nu_{\tau} \nu_{\tau}$ events
 - by requiring isolated tracks matched to hadronic clusters
 - Calculate E as sum E of clusters within $\delta R{<}0.15$
- Fit E_{T(clus)}/p_{T(trk)} to measure hadronic response
- Study response scale, resolution, longitudinal profile

Eur. Phys. J. C 82 (2022) 223

Hadronic scale in data

- Eur. Phys. J. C 82 (2022) 223
- Hadronic scale measured with good
 precision
 - <1% up to p_T =185GeV in barrel
 - <0.6% up to 120GeV
- Ex: scale ~2% under-estimated in central
 - consistent with other measurements

Help to constrain jet E uncertainty at high p_T

Advanced constituents building to improve jet reconstruction

Jet constituents building

• How to combine Tracks & cluster to build constituents ?

P-A Delsart

Jet constituents building

P-A Delsart

Improving Jet Calibration

Small R jet E calibration

- •E scale, resolution & uncertainties of small-R jets are crucial for analysis
- •Complex multi-step calib procedure developed since Run1
- •Works & refinements at each steps. Example:
 - GSC
 - in-situ

Small R jet E calibration : GSC

- •GSC=Global Sequential Calibration
 - Adjustment calibrations, each correcting dependency on 1 variable
 - aim at improving resolution without changing the scale
- Replaced by a single DNN
 - accounting for correlations between variables
 - Improves resolution—
 - lower sensitivity on q/g flavour → lower uncertainties

24-04-08

Small R jet E calibration : in-situ

- •Use real data to correct for data/MC difference in E scale
- Based on pT balance between
 - reference object (γ, Ζ, ...)
 - 1 (or+) jets or hadronic recoil
 - extract correction factors from balance equation
- •Example : MPF
 - missing projection fraction

$$\vec{p_T}^{ref} + r_{\rm MPF} \, \vec{p_T}^{\rm recoil} = -\vec{E}_T^{\rm miss}$$

Eur. Phys. J. C 83 (2023) 761

P-A Delsart

Small R jet E calibration : in-situ

- In-situ techniques provide E scale factors between MC & data
- together with uncertainties on E scale

^ни 0.92

0.88 0.86 0.84

0.82 0.80

1.06 Data 1.04 1.02 Š

> 0.98 30 40

ATLAS

 $|n^{jet}| < 0.8$

 $\sqrt{s} = 13 \text{ TeV}, 140 \text{ fb}^{-1}, \gamma + \text{iet}$

100

200

 $0.90 \vdash$ Anti-k, R = 0.4 (PFlow+JES)

Data

Pvthia8

Sherpa 2.2.2

1000

2000 p_{τ}^{ref} [GeV]

Large-R jet : E&mass calib with DNN

- Large-R jet E and mass calib important for heavy particle searches
- Exploit correlations between E, mass and many jet-variables with a single NN predicting both E&mass response
- More than a simple DNN regression !
 - encoding of jet position w.r.t detector
 - special loss to learn response distribution mode
 - special architecture & training

Large-R jet : E&mass calib with DNN

0.3

0.25

0.2

0.15

0.

0.05

Jet Energy Resolution, $\sigma(r_{\rm E})$

- η annotation necessary to predict sharp variations vs η
- Superior performance of DNN calib
 - E and mass scale and resolution
 - lower PU and generator dependency
- Will be the **legacy Run2 & Run3 calibration** for large-R jets

p_true [GeV]

JETM-2023-02 (submitted to MLST)

24-04-08

Improving large-R jet Identification

Jet W/Z, top or q/g tagging

- Identifying & distinguishing source of hadronic decay is crucial for many physics analysis
- Long history of evolving approaches including
 - technical aspects (cuts based, various ML)
 - physics insight (structure variable, shower history)
- Latest round of ATLAS studies involve advanced techniques
 - using jet constituents
 - advanced ML
 - Applied to top, W or quark vs gluon tagging

Advanced tagging techniques

- Using constituents
 - access complete information on jet structure
 - angular relations \rightarrow build graphs \rightarrow Graph NN usage
- Common ML models tested :
 - Energy Flow Network (IRC-safe NN → EFN)
 - ParticleNet (4-vector GNN models)
 - Particle Transformer ("transformer" models for particles \rightarrow **ParT**, **DeParT**)

P-A Delsart

Quark vs gluon tagging

- Advanced constitutents-based taggers
 outperform jet-level taggers
 - except EFN

24-04-08

- Tested modelling sensitivity by comparing tagging efficiencies on different generators
- Advanced tagger are more sensitive

ATL-PHYS-PUB-2023-032

P-A Delsart

W tagging

- ML taggers shape the jet mass bkg distribution
 - very problematic when estimating bkg
 - Development of Adverserial NN to enforce mass/tagger decorrelation
- Use of physics motivated jet structure
 - Lund jet plan ↔ history of jet shower
 - allow to build meaningful graph of the jet \rightarrow **GNN**
- Lund-plan tagging comparable to advanced constits-based taggers
 - and better than jet-level taggers
- Mass decorrelation decreases performance

24-04-08

•Sensitivity to modelling also tested :

better tagging performance

<==>

higher sensitivity to modelling

Top tagging

- Also testing Convolutional NN on "jet images" (ResNet)
 - obtained by mapping constits on a pixel grid
- •Same tendencies : advanced constituentsbased taggers perform better

Top tagging

- •First estimations of full uncertainties on rejection rate
 - propagating constit-level uncertainties+modelling
 - higher uncertainties for stronger tagger

Conclusions

- After decades ATLAS continues to improve its hadronic jet reco chain
- Many recent and on-going works at every levels
 - from low-level cluster calibration...
 - ... to reduced jet uncertainties
- ML tools are unavoidable
 - Promising performances in almost every domains
 - but also bring complexity and difficulties
 - in particular: uncertainties in jet tagging

Necessary for optimal physics analysis from precision measurements to BSM exploration ... and to face HL-LHC challenges

Back-up

Low-level cluster calibration with ML

- Calorimeter clusters are build of many cells spatially connected
- can be represented as
 images (1 cell= 1pixel)
 point clouds (1 cell = 1 point)
 graphs (1 cell = 1 node)
 Graph NN
- Exploit advanced ML techniques to learn to classify and calibrate on single pion simulated samples (π^0, π^+, π^-)
 - charged $\pi \rightarrow$ hadronic showers
 - neutral $\pi \rightarrow EM$ showers

different calorimeter responses

Low-level cluster classification with ML

- Use ML to classify charged vs neutral pions
- Compare to standard ATLAS technique
 - cut based on cluster variables
 - "P^{EM}"

ML improves rejection by factor >5

24-04-08

True Cluster Energy [GeV

P-A Delsart

Hadronic flavour content impact on Jet Energy

ATL-PHYS-PUB-2022-021

Flavour impact on p_T response

- p_T response differences in q-initiated vs g-initiated jets
- depends on MC generator
- Important contribution to Jet p_T uncertainty (mid to low- p_T)

Flavour impact on p_T response

- p_T response differences in q-initiated vs g-initiated jets
- depends on MC generator
- Important contribution to Jet p_T uncertainty (mid to low- p_T)

Understanding the different responses

 Jet response depends on the Baryon & Kaon E fraction

- These fractions vary with the generator
- and in quark vs gluon jets

P-A Delsart

Understanding the different responses

- Impact of hadron content on jet response quantified for the 1st time
- Re-weighting baryon/kaon distributions reduces majority of differences across generators
- Motivates further generator tuning and measurements to better constraint uncertainties

Other hadronic measurements

- Response resolution
- longitudinal profile
- Important handles in
 - constraining jet E scales
 - τ lepton hadronic scale
 - jet substructure measurements
 - tune run3 response

Advanced constituents building to improve jet reconstruction

Impact on large-R jet building

- Many different combinations studied
- Compared with different
 metrics
 - Jet E and M resolution
 - W/Z/top tagging performance
 - Pile-Up (PU) stability

Pile-Up dependence of Large-R jet Mass

• Number Primary Vertex (NPV) impact on W-jet mass

 \sim

Large-R W&top tagging & mass resolution

UFO constituent improves background rejection by factor 2

