
08/04/2024 P-A Delsart 1

Reconstructing, classifying 
and calibrating hadronic 

objects in ATLAS 
Pierre-Antoine Delsart

DIS 2024



24-04-08 P-A Delsart 2

Hadronic jets at the LHCHadronic jets at the LHC

Hadronic jets

● QCD phenomena resulting of a parton 
emission

● Ubiquitous in LHC analyses

Continuous work in ATLAS to optimize

● Energy and Mass scale and resolution

● Uncertainties on E and Mass

● Discrimination between different types of 
jets Eur. Phys. J. C 81 (2021) 689

https://link.springer.com/article/10.1140/epjc/s10052-021-09402-3
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Hadronic jets at the LHCHadronic jets at the LHC

Hadronic jets

● QCD phenomena resulting of a parton 
emission

● Ubiquitous in LHC analysis

Continuous work in ATLAS to optimize

● Energy and Mass scale and resolution

● Uncertainties on E and Mass

● Discrimination between different types of 
jets

This talk:

selection of recent published works & 
results
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Hadronic flow reconstruction in ATLASHadronic flow reconstruction in ATLAS

● Flow of hadronic particles == constituents of jets

– set of 4-vectors 

2 possible type of primary signals :

● Calorimeter clusters

– 3D cell clustering using ATLAS's 7 layers depth

– Good reconstructed energy (E) at high pT

– limited granularity

● Inner Detector tracks

– Excellent spatial resolution

– Good reconstructed pT  at lower pT

– Limited to charged particles
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Hadronic jet reconstruction in ATLASHadronic jet reconstruction in ATLAS

R

● Jet = group of constituents

● groups formed by a Jet algorithm 
with a distance parameter R

– ex: "anti-kT"

● ATLAS uses

– R=0.4 : "standard" jets

– R=1.0 : "large-R" jets to collect 
boosted hadronic decays of 
heavy particles (W/Z, top, 
Higgs,...)
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Calorimeter cluster classification and calibration 
with Machine Learning (ML)

2 types of studies :
● "Low level" using calorimeter cells information

– single π simulations, 
– proof of concepts using advanced ML (CNN, Graph NN, "point clouds")
– promising results : ATL-PHYS-PUB-2020-018 and JETM-2022-002

● "Higher level" using only cluster variables → next slides

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2020-018
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PLOTS/JETM-2022-002/
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Higher-level cluster calibration with DNNHigher-level cluster calibration with DNN

● Can ML using "engineered" cluster-level 
variables perform as well as ML using full cell 
info ?

– In practice cluster-level approach much 
easier & faster to train and use in analysis

● Train DNN to predict response w.r.t 
deposited E

– Using simulated clusters inside Jet in 
realistic multijet events

– Based on 15 chosen variables

– Also testing Bayesian NN

ATL-PHYS-PUB-2023-019

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2023-019/


24-04-08 P-A Delsart 8

Higher-level cluster calibration with DNNHigher-level cluster calibration with DNN
●Compared to no (EM) and 
"standard hadron calibration" 
(LCW see Eur. Phys. J. C 77 (2017) 490) 

●Very encouraging results with 
improved E response and 
resolution

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/PERF-2014-07/
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Measuring hadronic response in data 
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Measuring hadronic responseMeasuring hadronic response

● Select W→τ ντ→πντντ events
– by requiring isolated tracks 

matched to hadronic clusters

– Calculate E as sum E of clusters 
within δR<0.15

● Fit ET(clus)/pT(trk) to measure hadronic 
response

● Study response scale, resolution, 
longitudinal profile Eur. Phys. J. C 82 (2022) 223 

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/JETM-2018-08/
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Hadronic scale in dataHadronic scale in data

● Hadronic scale measured with good 
precision
– <1% up to pT=185GeV in barrel

● <0.6% up to 120GeV

● Ex: scale ~2% under-estimated in 
central 
– consistent with other measurements

Eur. Phys. J. C 82 (2022) 223 

Help to constrain jet E uncertainty at high pT

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/JETM-2018-08/
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Advanced constituents building to improve jet 
reconstruction
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Jet constituents buildingJet constituents building

● How to combine Tracks & cluster to build constituents ?
Tracks

Particle Flow (PFlow)

tracks (low-pT)
complemented with E from clusters

TrackCaloCluster (TCC)

CaloClusters Energies
re-positioned on angular positions of matched tracks

Unified Flow Object (UFO)
combining PFlow & TCC methods

Calorimeter Cluster

C
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Combine advantages :
● pT resolution driven by

● tracker at low pT, charged
● calorimeter at high pT

● Use angular position for charged at all pT
● better mass resolution
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Jet constituents buildingJet constituents building

● How to combine Tracks & cluster to build constituents ?
Tracks

Particle Flow (PFlow)

tracks (low-pT)
complemented with E from clusters

TrackCaloCluster (TCC)

CaloClusters Energies
re-positioned on angular positions of matched tracks

Unified Flow Object (UFO)
combining PFlow & TCC methods

Calorimeter Cluster
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Combine advantages :
● pT resolution driven by

● tracker at low pT, charged
● calorimeter at high pT

● Use angular position for charged at all pT
● better mass resolution

New ATLAS default choice for large-R jets

● UFO constituents
● CSSK : "Charged Subtraction"+"Soft Killer" P-U mitigation
● Soft Drop (Z=0.1,β=1) grooming
Eur. Phys. J. C 81 (2021) 334 

UFO also proven to be suitable for small-R jets
● similar performance than regular Pflow
● ATL-PHYS-PUB-2022-038

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/JETM-2018-06/
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2022-038/
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Improving Jet Calibration
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Small R jet E calibrationSmall R jet E calibration

●E scale, resolution & 
uncertainties of small-R jets are 
crucial for analysis

●Complex multi-step calib 
procedure developed since Run1

●Works & refinements at each 
steps. Example: 
– GSC 
– in-situ

Pile-up correction

Absolute E scale

GSC

in-situ
η-intercalib
pT balance

...
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Small R jet E calibration : GSCSmall R jet E calibration : GSC

●GSC=Global Sequential Calibration
– Adjustment calibrations, each correcting 

dependency on 1 variable
– aim at improving resolution without 

changing the scale
●Replaced by a single DNN

– accounting for correlations between 
variables

– Improves resolution
– lower sensitivity on q/g flavour →lower 

uncertainties
Eur. Phys. J. C 83 (2023) 761

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/JETM-2022-01
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Small R jet E calibration : in-situSmall R jet E calibration : in-situ

●Use real data to correct for data/MC 
difference in E scale

●Based on pT balance between
– reference object (γ, Z, …)
– 1 (or+) jets or hadronic recoil 
– extract correction factors from balance 

equation
●Example : MPF

– missing projection fraction

γ

Eur. Phys. J. C 83 (2023) 761

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/JETM-2022-01
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Small R jet E calibration : in-situSmall R jet E calibration : in-situ

● In-situ techniques provide E scale 
factors between MC & data

● together with uncertainties on E scale

Eur. Phys. J. C 83 (2023) 761

Combine

Z+jet γ+jet

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/JETM-2022-01
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Large-R jet : E&mass calib with DNNLarge-R jet : E&mass calib with DNN

● Large-R jet E and mass calib important 
for heavy particle searches

● Exploit correlations between E, mass 
and many jet-variables with a single 
NN predicting both E&mass response

● More than a simple DNN regression !

– encoding of jet position w.r.t detector

– special loss to learn response 
distribution mode

– special architecture & training 

JETM-2023-02 (submitted to MLST)

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/JETM-2023-02/
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Large-R jet : E&mass calib with DNNLarge-R jet : E&mass calib with DNN
● η annotation necessary to 

predict sharp variations vs η

● Superior performance of DNN 
calib

– E and mass scale and 
resolution

– lower PU and generator 
dependency

● Will be the legacy Run2 & 
Run3 calibration  for large-R 
jets 

JETM-2023-02 (submitted to MLST)

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/JETM-2023-02/
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Improving large-R jet Identification
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Jet W/Z, top or q/g taggingJet W/Z, top or q/g tagging

● Identifying & distinguishing source of hadronic 
decay is crucial for many physics analysis

● Long history of evolving approaches including

– technical aspects (cuts based, various ML)

– physics insight (structure variable, shower history)

● Latest round of ATLAS studies involve advanced 
techniques

– using jet constituents

– advanced ML

– Applied to top, W or quark vs gluon tagging
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Advanced tagging techniquesAdvanced tagging techniques
●Using constituents

– access complete information on jet 
structure

– angular relations→build graphs → Graph 
NN usage

●Common ML models tested :
– Energy Flow Network (IRC-safe NN → 

EFN)

– ParticleNet  (4-vector GNN  models)

– Particle Transformer ("transformer" 
models for particles→ ParT , DeParT)
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Quark vs gluon taggingQuark vs gluon tagging

●Advanced constitutents-based taggers 
outperform jet-level taggers

– except EFN

●Tested modelling sensitivity by 
comparing tagging efficiencies on 
different generators

●Advanced tagger are more sensitive

ATL-PHYS-PUB-2023-032

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2023-032/


24-04-08 P-A Delsart 26

W taggingW tagging
● ML taggers shape the jet mass bkg distribution

– very problematic when estimating bkg

– Development of Adverserial NN to enforce 
mass/tagger decorrelation

● Use of physics motivated jet structure

– Lund jet plan ↔ history of jet shower

– allow to build meaningful graph of the jet → 
GNN

● Lund-plan tagging comparable to advanced 
constits-based taggers

– and better than jet-level taggers

● Mass decorrelation decreases performance

ATL-PHYS-PUB-2023-017 ATL-PHYS-PUB-2023-020

before tagging

after tagging

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2023-017/
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2023-020/
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W taggingW tagging

●Sensitivity to modelling also 
tested :

better tagging performance 

<==> 

higher sensitivity to modelling
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Top taggingTop tagging

●Also testing Convolutional 
NN on "jet images" 
(ResNet)
– obtained by mapping 

constits on a pixel grid

●Same tendencies : 
advanced constituents-
based taggers perform 
better

ATL-PHYS-PUB-2022-039

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2022-039/
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Top taggingTop tagging

●First estimations of full 
uncertainties on rejection 
rate
– propagating constit-level 

uncertainties+modelling

higher uncertainties for 
stronger tagger

JETM-2023-004 (updated results to come soon!)

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PLOTS/JETM-2023-004/
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ConclusionsConclusions
● After decades ATLAS continues to improve its hadronic jet reco chain

● Many recent and on-going works at every levels

– from low-level cluster calibration…

– … to reduced jet uncertainties

● ML tools are unavoidable

– Promising performances in almost every domains

– but also bring complexity and difficulties
● in particular: uncertainties in jet tagging

Necessary for optimal physics analysis from precision measurements to BSM 
exploration … and to face HL-LHC challenges
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Back-up
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● Calorimeter clusters are build of many cells spatially connected

● can be represented as 

– images (1 cell= 1pixel)

– point clouds (1 cell = 1 point)

– graphs (1 cell = 1 node)

● Exploit advanced ML techniques to learn to classify and calibrate on single pion 
simulated samples (π0,π+,π-)

– charged π → hadronic showers 

– neutral π → EM showers

Low-level cluster calibration with MLLow-level cluster calibration with ML

Convolutional NN

DeepSets / ParticleFlow Network

Graph NN

different calorimeter responses

https://arxiv.org/abs/1810.05165
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Low-level cluster classification with MLLow-level cluster classification with ML

● Use ML to classify charged 
vs neutral pions

● Compare to standard 
ATLAS technique
– cut based on cluster 

variables

– "PEM" 

ML improves rejection 
by factor >5 
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Low-level cluster calibration with MLLow-level cluster calibration with ML

● Use ML to calibrate the hadronic 
response

– Response :  < Ereco/Etrue >

● Compare to standard ATLAS 
uncalibrated (EM) and calibrated (LCW) 
clusters  

ML improves significantly 

scale

resolution

E scale

E resolution
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Hadronic flavour content impact on Jet Energy

ATL-PHYS-PUB-2022-021

https://cds.cern.ch/record/2808016
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Flavour impact on pFlavour impact on pTT response response

● pT response differences in q-initiated vs g-initiated jets
● depends on MC generator
● Important contribution to Jet pT uncertainty (mid to low-pT)

pT response w.r.t Pythia

quark jets

gluon jets
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Flavour impact on pFlavour impact on pTT response response

● pT response differences in q-initiated vs g-initiated jets
● depends on MC generator
● Important contribution to Jet pT uncertainty (mid to low-pT)
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Understanding the different responsesUnderstanding the different responses

● Jet response depends on the 
Baryon & Kaon E fraction

● These fractions vary with the 
generator

● and in quark vs gluon jets
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Understanding the different responsesUnderstanding the different responses

● Impact of hadron content on jet response quantified for 
the 1st time

● Re-weighting baryon/kaon distributions reduces 
majority of differences across generators

● Motivates further generator tuning and measurements 
to better constraint uncertainties
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Other hadronic measurementsOther hadronic measurements

● Response resolution
● longitudinal profile
● Important handles in 

– constraining jet E scales
– τ lepton hadronic scale
– jet substructure measurements
– tune run3 response
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Advanced constituents building to improve jet 
reconstruction
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Impact on large-R jet buildingImpact on large-R jet building

● Many different combinations 
studied

● Compared with different 
metrics
– Jet E and M resolution
– W/Z/top tagging 

performance
– Pile-Up (PU) stability

Jet constituent type

Pile-up mitigation method

Jet grooming algorithm

X

X
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Pile-Up dependence of Large-R jet MassPile-Up dependence of Large-R jet Mass
● Number Primary Vertex (NPV) impact on W-jet mass

W

ATLAS choice
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Large-R W&top tagging & mass resolutionLarge-R W&top tagging & mass resolution

UFO constituent 
improves background 
rejection by factor 2

UFO constituent : 
improved mass 

resolution for all pT
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