Jet substructure measurements and precision measurements of multijet production with the ATLAS experiment

Zdenek Hubacek Czech Technical University in Prague On behalf of the ATLAS Collaboration

DIS2024, Apr 8-12,2024, Grenoble

Co-funded by the European Union

ZECH TECHNICAL INIVERSITY N PRAGUE

CTU

Outline

- Test of various QCD aspects in pp collisions at the LHC
- Improving parton shower
 modelling
- Lund jet plane in dijet events
- Event isotropies

Motivation

- Jets produced in hard scattering process, production described by perturbative QCD, now at NNLO in $\alpha_{\rm S}$
- Proton structure described by ^{***}
 PDFs (non-perturbative effects)
- Jet substructure is also affected by soft emissions

Understanding QCD is essential for everything at the hadron colliders

mmm

Original credit: Benjamin Nachman

Lund plane

- Lund diagrams are a theoretical representation of the phasespace within jets
- Brings many soft-drop related observables into a single framework
- Experimentally: recluster a jet with a C/A algorithm and then decluster following the hardest branch

Measurement of Lund subjet multiplicities

- N_{Lund} and N^{Primary}_{Lund} subjet multiplicity (number of subjets above specified p_T)
- Measured in ATLAS **dijet** events at $\sqrt{s}=13$ TeV
- 8 different emission (k_t) requirements (0.5 GeV, 1 GeV, 2 GeV, 5 GeV, 10 GeV, 20 GeV, 50 GeV, 100 GeV)
- Measured differentially in jet p_T and relativerapidity bins (separating more-central and more-forward)
- Compared to state-of-the-art PS Monte Carlo and to the analytical NLO+NNDL calculation

 $k_t = p_T^{\text{emission}} \times \Delta R(p^{\text{emission}}, p^{\text{core}})$

Lund subjet multiplicity analysis selection

- Dijet events, p_T >120 GeV and |y|<2.1, balanced $p_T^{Lead}<1.5xp_T^{Sublead}$
- All tracks with p_T >500MeV within ΔR =0.4 of selected jets are reclustered using the C/A algorithm
- Emission k_T rescaled by the charged/total p_T

- Data unfolded using iterative Bayesian unfolding using the nominal Pythia MC
- JES (2—4%) and track reconstruction uncertainties are typically the dominant systematical uncertainties

Lund subjet multiplicity

MC Models:

Pythia 8.230

 \circ p_T ordered PS evolution

Sherpa 2.2.5 (x2)

- AHADIC cluster model
- o Lund string model
- Sherpa 2.2.11 (x2)
 - o p_T ordered
 - o **DIRE**

Herwig 7.1.3

o Angle ordered PS

Powheg+Pythia

- Sherpa 3 + ALARIC
- DIRE includes higher-order splittings but not at NLL accuracy ALARIC is NLL accurate

Perturbative

- Herwig gives best overall description of multiplicities
- Sherpa best when non-perturbative (low k_t) emissions allowed

Non-perturbative

Comparison with analytical calculations

NLO+NNDL+NP prediction provided by authors of JHEP 04 (2023) 104

DIS2024, Apr 8-12, 2024, Grenoble

Event shape variables

- Family of observables which characterize the event topology and/or energy flow in collider events
- Thrust, thrust minor, sphericity, aplanarity
 - event isotropies

Example: **Transverse thrust** – thrust axis n_{\perp} to which the projections of p_{T} are maximised, $0 \le \tau_{\perp} < 1 - 2/\pi$

DIS2024, Apr 8-12, 2024, Grenoble

Event shapes as a geometrical problem

- Event shapes together with other concepts unified through a geometric language <u>JHEP07 (2020) 006</u>
- Energy (Earth) mover's distance EMD

 a measure of distance between two
 probability distributions = minimal
 amount of work to rearrange one
 event *E* into another *E*'

$$\operatorname{EMD}_{\beta}(\mathcal{E}, \mathcal{E}') = \min_{\{f_{ij} \ge 0\}} \sum_{i=1}^{M} \sum_{j=1}^{M'} f_{ij} \theta_{ij}^{\beta},$$

$$\bigcap_{i=1}^{M} f_{ij} = E'_{j}, \quad \sum_{j=1}^{M'} f_{ij} = E_{i}, \quad \sum_{i=1}^{M} \sum_{j=1}^{M} f_{ij} = \sum_{i=1}^{M} E_{i} = \sum_{j=1}^{M'} E_{j} = E_{tot}$$

$$\bigcap_{i=1}^{M} P_{2}^{BB}, E$$

$$\prod_{i=1}^{M} P_{2}^{BB}$$

$$\prod_{i=1}^{M} C_{i} = E_{i}, \quad D_{i} = E_$$

Event isotropies

- EMD problem can be solved using Optimal Transport methods
- Event isotropies how far is a collider event \mathcal{E} from a symmetric radiation pattern \mathcal{U} , $\mathcal{I}=\text{EMD}(\mathcal{E},\mathcal{U})$ $\mathcal{I}\in[0,1]$
- Completely isotropic events $\mathcal{I}=0$

Run 300687, Event 1358542809 – The most isotropic $(1-I_{Ring}^{N=128}=0.922)$ has 12 jets with $p_T>60$ GeV

Event isotropies

- $N_{jet} \ge 2, H_{T2} \ge 500 \text{ GeV}$
- 3 isotropies binned in N_{iet} (\geq 2,3,4,5) and H_{T2} (≥ 500,1000,1500 GeV)

 $\frac{\mathrm{d}\sigma}{\mathrm{d}(l_{\mathrm{Ring}}^2)}$

Pvthia

♦ Powheg+Herwig

∇ Sherpa (Lund)

Herwig (Dipole)

/2 Rina

Data

Sherpa (AHADIC)

+ Herwig (Ang. ord.)

 $\sqrt{s} = 13 \text{ TeV}, 140 \text{ fb}^{-1} \square \text{Powheg+Pythia}$

ATLAS

 $= N_{\text{iets}} \ge 2$

 $H_{T_2} \ge 500 \text{ GeV}$

 10^{2}

10

Event isotropies – $I_{\rm Ring}^2$

- N_{jet} ≥ 2, H_{T2} ≥ 500 GeV
- 3 isotropies binned in N_{jet} (≥ 2,3,4,5) and H_{T2} (≥ 500,1000,1500 GeV)
- Overall, the isotropic region is best described by NLO MC
- No significant differences are observed between the cluster and Lund string hadronisation models for the Sherpa samples

Event isotropies – $I_{\rm Ring}^{128}$

- Dynamic range 6 orders of magnitude
- Quality of modelling very different from I²_{Ring}
 (Powheg+Pythia/Herwig very different from other MC)
- Herwig dipole predicts relatively more dijet-like events than angular ordered

- ATLAS QCD program probes both its soft and hard aspects
- Lund plane multiplicities and Event isotropies measurements presented
- Further details can be found in the retrospective publications

Thank you

Name of the project: Fundamental constituents of matter through frontier technologies (FORTE) Registration number: CZ.02.01.01/00/22_008/0004591

Backup

ATLAS jets and jet energy scale

- Anti-k_T R=0.4 used by default
- (Large R=1.0 in certain analyses, R=0.2 subjet analyses)
- PFlow objects (combination of calorimeter+tracker information)

- Jet response varies by 1–2% depending on hadronization model in the simulation
- Fraction of energy carried by baryons (and kaons to lesser extent) varies significantly between generators