The Silicon Vertex Tracker for the ePIC detector at the Electron-Ion Collider

Gian Michele Innocenti for the ePIC collaboration Massachusetts Institute of Technology

Heavy-flavor physics at the Electron-Ion Collider

→ Heavy-flavor observables are crucial to address the key physics questions of the EIC physics program

Inclusive heavy-flavor measurements in ep/eA collisions:

- \rightarrow gluon (n)PDFs down to moderate/low x_{BJ}
- → evolution equations beyond DGLAP?

DD correlations:

- \rightarrow access to gluon TMDs
- → nuclear structure beyond the collinear limit

B.S. Page et al. Phys. Rev. D 101, 072003 H. T. Li and I. Vitev, Phys. Rev. Lett. 126, 252001 EIC, BNL-98815-2012, arXiv:1212.1701

Heavy-flavor physics at the Electron-Ion Collider

→ Heavy-flavor observables are crucial to address the key physics questions of the EIC physics program

Inclusive heavy-flavor measurements in ep/eA collisions:

- \rightarrow gluon (n)PDFs down to moderate/low x_{BJ}
- → evolution equations beyond DGLAP?

DD correlations:

- \rightarrow access to gluon TMDs
- → nuclear structure beyond the collinear limit

B.S. Page et al. Phys. Rev. D 101, 072003 H. T. Li and I. Vitev, Phys. Rev. Lett. 126, 252001 EIC, BNL-98815-2012, arXiv:1212.1701

Heavy-quark jet production and substructure in ep/eA: → parton-propagation inside the "cold" nuclear matter

 \rightarrow parton-shower evolution in a vacuum-like environment

Heavy-flavor hadrochemistry and collectivity:

- \rightarrow hadronization modification in cold-nuclear matter
- \rightarrow what is the time scale of hadronization?

SVT detector requirements

Main reconstruction channels for heavy-quark topologies:

- hadronic decays of charmed mesons and baryons
- jet flavor tagging
- \rightarrow outstanding DCA/p_T resolutions down to low p_T in a wide pseudorapidity region ($|\eta| < 3.0-3.5$)

SVT detector requirements

Performance study for $D^0\overline{D}^0$ **correlations**

SVT detector requirements

Charm baryons are crucial to have hadronization under control!

Performance over the entire kinematic region (p_T , η) is essential for our physics program (e.g., low/high x reach): \rightarrow unprecedented constraints on the detector design

→ Impact of DCA resolution is magnified in multiple HF hadron measurements

	Momentum Resolution	Spatial Resolution
Backward (-3.5 to -2.5)	~0.10%×p⊕2.0%	~ 30/pT μm ⊕ 40 μm
Backward (-2.5 to -1.0)	~0.05%×p⊕1.0%	~ 30/pT μm ⊕ 20 μm
Barrel (-1.0 to 1.0)	~0.05%×p⊕0.5%	~ 20/pT µm ⊕ 5 µm
Forward (1.0 to 2.5)	~0.05%×p⊕1.0%	~ 30/pT μm ⊕ 20 μm
Forward (2.5 to 3.5)	~0.10%×p⊕2.0%	~ 30/pT μm ⊕ 40 μm

Expected radiation dose (preliminary)

10x275GeV e+p, 275GeV beam+gas, total fluence (neutron+proton), top luminosity, 10 run periods (~6 months per run)

Fluence up to a few 10¹² n_{eq}/cm² for the inner region of the hadron endcap \rightarrow much lower than in high-luminosity pp/PbPb collisions at RHIC or LHC

Beam energies:

- 10 GeV electron beam
- 275 GeV proton beam

Luminosity and int. rate:

- 10⁻³⁴ cm⁻²s⁻¹ luminosity
- DIS interactions (~ 500kHz)
- Beam-gas background 10 kAhr
- No synchrotron radiation included (yet)

Running time:

- 10 half-year running periods
- 100% up time

Sensor requirements and challenges

High-spatial-resolution and efficiency:

- high pixel granularity
- very low material budget
- No strong requirement for radiation
- Large-area coverage

SVT sensor area is much larger (~8m²)!

 \rightarrow Adapt the ITS3 MOSAIX to develop EIC-Large Area Sensors (LAS)

> **SVT** environment has less particle occupancy \rightarrow data multiplexing

G.M. Innocenti, MIT, DIS 2024, SVT detector for the ePIC experiment at the EIC

→ Baseline technological choice for the sensor: **MOSAIX** sensor in 65 CMOS technology being developed for the ALICE ITS3 upgrade

SVT is a wide-η detector

 \rightarrow strong constraints on material budget also at large η (challenge for services, cooling, powering...)

Silicon Vertex Tracker for ePIC: detector concept

Inner Barrel (IB)

Inner Barrel (IB)

- Three layers, L0, L1, L2
- Radii of 36, 41, 120 mm
- Length of 27 cm
- X/X0 ~ 0.05% per layer
- "Bent" MOSAIX MAPS sensors

Outer Barrel (OB)

- Two layers, L3, L4
- Radii of 27 and 42 cm
- X/X0 ~ 0.25% and ~ 0.55%
- Staved structure with LAS **EIC MAPS sensors**

~ 8 m² of silicon sensors!

Electron and Hadron Endcap Disks (EE, HE)

Electron/Hadron Endcaps:

- Two arrays with five disk structures with a corrugated core
- X/X0 ~ 0.25% per disk
- LAS EIC MAPS sensors

"Stitched" and "thinned" MAPS in 65 nm technology

Sensor stitching is one of the key features of the MOSAIX design:

- Repeated Sensor Units (RSUs) are printed during the lithographic process
- → large-area MAPS sensors

ALICE ITS3, CERN-LHCC-2024-003 / ALICE-TDR-021

Wafers are then thinned below ~30-40 µm \rightarrow below elastic threshold for silicon

Wafers can be bent and held together by carbon foam profiting from the intrinsic stiffness of silicon

ALICE ITS3, CERN-LHCC-2024-003 / ALICE-TDR-021 Material-budget reduction with next-generation MAPS

A focus on the MOSAIX sensor design and specifications

- Pixel size: ~ 20 x 22 μ m²
- Frame duration: 2 to 5 μs
- Powering and readout only from endcaps
- High-speed links (up to 10.24 Gbps)

SVT: highlights on R&D activities

R&D for the Inner layers:

- reduce services at forward/backward
- mechanical stability for the R=12 cm layer (R_{ITS3}^{max} is < 4 cm!)
- cooling in the presence of forward disks obstructing air airflow

SVT disks

Outer layers and disks:

- material budget in the presence of additional support structures and services
- cooling

SVT at the ePIC: timescale of the sensor development

Institutions in SVT

Large (and growing) collaboration with strong involvement from the US, UK, Italy, and Czech Republic \rightarrow Extensive Si-detector experience in the ALICE, ATLAS, CMS, sPHENIX, and STAR experiments \rightarrow we welcome new institutes interested in joining the challenge!

Conclusion and outlook

Heavy-flavor capabilities in the widest p_T and η region essential for ePIC: \rightarrow need for a wide-coverage, low-material budget vertexer detector → outstanding DCA resolution as the key parameter for the detector design

The Silicon Vertex Tracker will exploit stitched MAPS sensors (MOSAIX) with bent and staved geometry to meet these requirements

Extensive R&D program ongoing:

→ toward the first large-acceptance tracker detector ever built with stitched MAPS

 MOSAIX sensor design (in collaboration with the ITS3 ALICE collaboration) • Large-Area MAPS sensors

• cooling strategy, service reduction, mechanical design, ...

Conclusion and outlook

Heavy-flavor capabilities in the widest p_T and η region essential for ePIC: \rightarrow need for a wide-coverage, low-material budget vertexer detector → outstanding DCA resolution as the key parameter for the detector design

The Silicon Vertex Tracker will exploit stitched MAPS sensors (MOSAIX) with bent and staved geometry to meet these requirements

Extensive R&D program ongoing:

→ toward the first large-acceptance tracker detector ever built with stitched MAPS

G.M. Innocenti, MIT, DIS 2024, SVT detector for the ePIC experiment at the EIC

 MOSAIX sensor design (in collaboration with the ITS3 ALICE collaboration) • Large-Area MAPS sensors

• cooling strategy, service reduction, mechanical design, ...

Thank you for your attention!

The ePIC experiment at the Electron-Ion Collider (EIC)

The ePIC experiment at the Electron-Ion Collider (EIC)

Summary of physics working group requirements

	Nomenclature		Tracking			Electrons and Photons		π/K/p PID		HCAL		Muono			
η			Min p⊤	Resolution	Allowed X/X ₀	Si-Vertex	Min E	Resolutio n σ _E /E	PID	p-Range (GeV/c)	Separation	Min E	Resolution σ _E /E	widons	
-6.9 — -5.8			low-Q ² tagger		δθ/θ < 1.5%; 10 ⁻⁶ < Q ² < 10 ⁻² GeV ²										
	∣n/A	Auxiliary													
-4.5 — -4.0	↓ p// (Detectors	tectors Instrumentation to separate charged particles from γ												
-4.0 — -3.5														~50%/√E+6%	
-3.5 — -3.0			Backwards Detectors					2%/√E+ (1-3)%							
-3.0 — -2.5					σ _p /p ~ 0.1%×p+2.0%		σ _{xy} ~30μm/p _T +								
-2.5 — -2.0							Topin			π suppression		GeV/c		~45%/√E+6%	
-2.0 — -1.5					σ _p /p ~ 0.05%×p+1.0%		σ _{xy} ~30μm/p⊤+ 20μm	-	7%/√E+		≤ 7 GeV/c				
-1.5 — -1.0									(1-3)%						
-1.0 — -0.5						1				up to 1:10 ⁴					
-0.5 — 0.0		Central		100 MeV π		~5% or	σ _{xyz} ~ 20 μm,	50					~500		
0.0 — 0.5		Detector	Barrel	135 MeV K	σ _p /p ~ 0.05%×p+0.5%	less	less d₀(z) ~ d₀(rφ) ~ 20/p⊤ GeV μm + 5 μm) MeV			≤ 10 GeV/c	≥ 3σ I	MeV	~85%/√E+7%	Useful for bkg, improve resolution
0.5 — 1.0											≤ 15 GeV/c				
1.0 — 1.5			Forward Detectors				σ _{×y} ~30μm/p⊤+		(10-12)%/ √E+(1-3)%	$3\sigma e/\pi \leq 30 \text{ GeV/c}$ $\leq 50 \text{ GeV/c}$ $\leq 30 \text{ GeV/c}$	≤ 30 GeV/c				
1.5 — 2.0					σ _p /p ~ 0.05%×p+1.0%										
2.0 - 2.5							20µm						~35%/√F		
2.5 — 3.0						-	σ _{xy} ~30μm/p _T + 40μm				≤ 30 GeV/c			00,0,42	
3.0 — 3.5				σ _p /p ~ 0.1%×p+2.0%		σ _{xy} ~30µm/p _T +	+		≤ 45	≤ 45 GeV/c					
3.5 — 4.0		Instrumentation to				σομπ									
4.0 - 4.5		separate charge particles from	separate charged particles from γ												
	↑e	Auxiliary													
> 6.2		Delectors	Proton Spectrometer		σ _{intrinsic} (<i>t</i>)/ t < 1%; Acceptance: 0.2< p⊤ <1.2 GeV/c										

Projection for radiation dose

10GeV e and 275GeV p beam+gas, 10x275GeV² DIS, top luminosity, 10 run periods (~ 6 months per run)

The region close to the beampipe is projected to experience a few hundred kRad

G.M. Innocenti, MIT, DIS 2024, SVT detector for the ePIC experiment at the EIC

Beam energies:

- 10 GeV electron beam
- 275 GeV proton beam

Luminosity and int. rate:

- 10⁻³⁴ cm⁻²s⁻¹ luminosity
- DIS interactions (~ 500kHz)
- Beam-gas background 10 kAhr
- No synchrotron radiation (yet)

Running time:

- 10 half-year running periods
- 100% up time

Low, O(10⁻⁷) hit occupancy per pixel in a O(µs) readout frame

Tracking performance (DCA and p_T resolution)

G.M. Innocenti, MIT, DIS 2024, SVT detector for the ePIC experiment at the EIC

-1.00 < η < 1.00

Distance of Closest Approach

23

The ITS3 upgrade for ALICE in Run 4

ITS3 upgrade:

- high-occupancy low-interaction rate (PbPb at the LHC)
- only three layers (radii from 1.90 to 3.15 cm)
- small pseudorapidity coverage (no strong constraints on material budget due to services)

Beampipe inner/outer radius (mm)		16.0/16.5				
IB Layer parameters	Layer 0	Layer 1	Layer 2			
Radial position (mm)	19.0	25.2	31.5			
Length (sensitive area) (mm)	260	260	260			
Pseudo-rapidity $coverage^{a}$	± 2.5	± 2.3	± 2.0			
Active area (cm^2)	305	407	507			
Pixel sensors dimensions (mm^2)	266×58.7	266×78.3	266×97.8			
Number of pixel sensors / layer		2				
Material budget (% X_0 / layer)	0.07					
Silicon thickness $(\mu m / layer)$	≤ 50					
Pixel size (μm^2)	$O(20 \times 22.5)$					
Power density (mW/cm^2)	40					
NIEL $(1 \mathrm{MeV} \mathrm{n_{eq}} \mathrm{cm}^{-2})$	10^{13}					
TID (kGray)	10					

Overview of the R&D phases for MOSAIX and LAS sensors

Stitched bent sensors for ITS3 and first three layers of the SVT

MLR1: qualification of CMOS 65nm technology, prototype for circuit blocks **ER1**: stitching technology demonstrator (MOSS and MOST sensor), yield studies

Stitched flat sensors for the outer layers of the SVT detector:

Large Area Sensor (11): stitched "flat" larger area sensor

G.M. Innocenti, MIT, DIS 2024, SVT detector for the ePIC experiment at the EIC

ER2: fully functional sensor that satisfy ITS3 requirements **ER3**: final production and design (bug fixes from ER2)

