Particle Identification with the ePIC detector at the EIC

Chandradoy Chatterjee INFN Trieste On behalf of the ePIC collaboration

OutLine:

- 1. Introduction to the EIC and ePIC
- 2. PID subsystems in ePIC

10/04/2024

Introduction: ePIC

→ Different PID technologies essential!

Backward PID

Serves as Time of Flight using HRPPD sensors!

e-endcap RICH for ePIC detector

- A classical proximity focusing RICH
- Pseudorapidity coverage: -3.5 < η < -1.5
- Uniform performance in the whole {η,φ} range
- π/K separation above 3σ up to ~ 9.0 GeV/c and ~10-20ps t₀ reference with a ~100% geometric efficiency in one detector

Sophisticated chi-squared analysis capable of performing efficient pid with complicated event topologies.

Backward PID (pfRICH performance)

Performance: $e/\pi \& \pi/k$ separation

5

Momentum (GeV/c)

10/04/2024

DIS2024, Grenoble France

Momentum (GeV/c)

Backward PID (HRPPD)

Beam tests at Fermilab

Magnetic field test at CERN

- Sophisticated PID algorithm for event level analysis: Software used by dual RICH.
- HRPPD as photo sensors: cost effective alternative solution for DIRC.
- Potential application as a timing detector.

10/04/2024

Crate for HV Electro

PS beam test at CERN

ark Box [LAPPD, SiPM, MCI

Backward PID (HRPPD for timing applications)

Backward Timing measurements \rightarrow Cherenkov photon hits created

in the window of LAPPD.

Geometric efficiency of particles with more than 5 photons. Timing resolution with nominal 50 ps/SPE provides $50/\sqrt{6} \sim 20$ ps timing resolution.

Central PID hpDIRC

DIRC bar

layer 1

layer 2

- Improved resolution.
- Key components:
 - Innovative focusing lens
 - Compact fused silica expansion.
 - Fast photon detection.

DIRC prism

Radiation-hard 3-layer lens prototypes

PbF₂ (HIT, China)

Sapphire (RMI, USA)

Beam test set up DIS2024,Grenoble France

Photek MAPMT 253

Baseline design with commercial MCP PMT sensors

A further option: HRPPDs

10/04/2024

Central PID hpDIRC

- 3D (X,Y,t) reconstruction thanks to fast photon detection sensor.
 Potential commonality with pfRICH for using HRPPD.
- Excellent agreement between simulation and beam test results.
 3 sigma pi/K separation up to 6 GeV/c (covering -1.73<eta<1.73).

Central and Forwrad PID TOF (AC-LGAD)

LGAD sensors provide fine space and time resolution

Comparison WF2 Simulation - Data

Track x position [mm]

Band bars show variation with temperature (T = -20C - 20C), and gain (G = 20 -30)

dielectric

DC contact

device termination

AC-coupled

electrodes

10/04/2024

Resolution [um]

Track x position [mm]

Central and Forwrad PID TOF (Simulation studies)

K/p

 π/K

e/π

pseudorapidity

- Advanced geometric description in simulation,
- Physics performance studies,
- dedicated R&D with photosensors and
- readout commonality with pfRICH in readout ASIC

Forward particle identification

Requirements:

- Wide acceptance (<u>+- 300 mrad/ 1.5<η≤3.5</u>)
- High momentum coverage up to <u>50 GeV/c π-K</u>
 - ★ Dual radiator (aerogel (n ~1.02)+ C₂F₆ gas (n~1.0008))
- Compact geometry: short radiator space available
 - Smaller number of detected photons → Critical optical tuning and control over background hits.
- Large sensor surface to be covered in magnetic field.
 - <u>Limited choice of photon-sensor</u> (SiPM as a cost effective solution)
- Simulation contains: 6 identical sectors
 - Spherical mirror with radius 220 cm
 - SiPM sensors with realistic PDE and additional 70% safety factor.
 - Realistic parameters for aerogel and C₂F₆

Forward particle identification *Performance studies*

W/ conservative 70% safety factor <u>18 photo electrons</u> are detected. Over a wide range of rapidity required resolution is achieved. Region affected w/ spherical aberration are limited in momentum (**6** σ sep. upto **20 GeV/c**).

Forward particle identification Optimization of Aerogel

Forward particle identification: *SiPM sensor*

pros

- o cheap
- high photon efficiency
- excellent time resolution
- insensitive to B field

• cons

- large DCR, ~ 50 kHz/mm² @ T = 24 °C
- not radiation tolerant
 - moderate fluence < 10¹¹ n_{eq}/cm²

R&D on mitigation strategies

- reduce DCR at low temperature
 - operation at T = -30 °C (or lower)
- recover radiation damage
 - in-situ high-temperature annealing
- exploit timing capabilities
 - with ALCOR (INFN) front-end chip

Different types of SiPMs have been studied.

Studies of radiation damage on SiPM

Maximum expected rate of DCR 300 kHz for each SiPM channel.

Forward particle identification Simulation Studies of SiPM noise

Forward particle identification: Beam test @ CERN

Ring angle and single particle resolution is in good agreement with simulation studies.

Forward particle identification: Beam test @ CERN

- Compatible results between simulation and beam test for very forward high momentum PID.
- Ongoing R&D and beam test measurements are coupled with simulation studies.
- Commonality of reconstruction algorithm with pfRICH

PID @ ePIC : Summary

a. Different PID technologies adopted by the ePIC collaboration to achieve desired physics goals:

- 1. AC-LGAD TOF
- 2. high performance DIRC
- 3. proximity focusing RICH
- 4. dual radiator RICH

b. Matured simulation and test beam results have validated the conceptual designs. Ongoing R&D exercises are focusing the risk minimization and optimization.

c. Preparation for the Technical design report is ongoing.

References:

- 1. TOF: EIC UG Meeting January 2023; https://indico.bnl.gov/event/17621/#b-7032-working-group-reports-v
- 2. TOF: Zhenyu Ye at POETIC 2023; https://www.ictp-saifr.org/wp-content/uploads/2023/05/yezhenyu_POETIC_20230505.pdf
- 3. DIRC: Nilanga Wickramaarachchi at DIS 2023; https://indico.cern.ch/event/1199314/contributions/5193192/attachments/2619099/4530710/DIS2023 hpDIRC Nilanga.pdf
- 4. DIRC: EIC UG Meeting Januray 2023; https://indico.bnl.gov/event/17621/#sc-9-4-hpdirc
- 5. dRICH beam tests and photo-sensors: R.Preghenella at DIS 2023;

https://indico.cern.ch/event/1199314/contributions/5193188/attachments/2619053/4528569/%5B20230326%5D%5BDIS%5D%20PID%20with%20EPIC%20at%20EIC.pdf

S. Vallarino; https://indico.bnl.gov/event/19345/#2-prototype-data

Back up

Backup-1: dRICH Aerogel performance

Noise (kHz)	Aerogel Thickness (cm)	Aerogel Type	3 σ limit π-K separation (GeV)
0	4	old	15
0	4	new	>18
300	4	new	17
0	6	new	19
300	6	new	18

Backup-2: dRICH SiPM noise rate

6 7 8 910

4

5

20

Backup-3: dRICH resolution contribution

pi/K separation_gas

Backup-5: Aerogel parameters

Backup-6: ALGAD Fill factor

LGADs – 4D detectors

CMS ETL

Excellent time and position resolutions

