Ultraperipheral Collisions at LHCb Cesar Luiz da Silva for the LHCb Collaboration Los Alamos National Lab

31st International Workshop on Deep Inelastic Scattering – Grenoble (France)

Office of Science

The LHC beauty detector Runs 1 & 2

- $e, \mu, \pi, K, p, \gamma$, particle identification in 1<p<100 GeV/c
- Unique forward instrumentation for heavy ion physics

$5 < |\eta| < 9$ Hole radius Hole radius 47mm LHCb x $\frac{1}{20}$ 61mm 600mm Cut-out ~108x230mm 600mm Station B2 z = -114.0mStation B1 Station B0 z = -19.7mz = -7.5mStation F1 z = 20.0mK. Carvalho Akiba et al 2018 JINST 13 P04017 Station F2 $z = 114.0 m_{3}$

HeRSCheL detector: high-rapidity shower counters for LHCb

4/8/2024

LHCb has detector coverage and particle identification for an entire UPC program

• Photoproduction of vector mesons

- scalar and tensor mesons from pomeron+pomeron and $\gamma\gamma$ interactions
- Glueball and tetraquark searches

• Non-resonant spectrum

• BSM : τ g-2 with hadron decays and lepton p_T<<1 GeV/c

4

Rapidity coverage

Brief History of CEP measurements in LHCb

$J/\psi,\psi$ (2S) Photo-production cross-section in CEP

Invariant mass of the photon-proton system $W^2_{\pm}=2k_{\pm}\sqrt{s}$

JHEP11(2013)085

Bottomonia photo-production cross-section in CEP

Can access oderon production.

New measurement using HeRSCheL on target.

Double Charmonium production

J.Phys.G41 (2014)115002

$$\begin{array}{ll} \sigma^{J/\psi\,J/\psi} &= 58 \pm 10 ({\rm stat}) \pm 6 ({\rm syst}) \, {\rm pb}, \\ \sigma^{J/\psi\,\psi(2S)} &= 63^{+27}_{-18} ({\rm stat}) \pm 10 ({\rm syst}) \, {\rm pb}, \\ \sigma^{\psi(2S)\psi(2S)} &< 237 \, {\rm pb}, \\ \sigma^{\chi_{c0}\chi_{c0}} &< 69 \, {\rm nb}, \\ \sigma^{\chi_{c1}\chi_{c1}} &< 45 \, {\rm pb}, \\ \sigma^{\chi_{c2}\chi_{c2}} &< 141 \, {\rm pb}, \end{array}$$

$$\frac{\sigma(J\!/\!\psi\,\psi(2S))}{\sigma(J\!/\!\psi\,J\!/\!\psi\,)} = 1.1^{+0.5}_{-0.4},$$

Photo-production in PbPb UPC

JHEP06(2023)146

4/8/2024

Comparison with theoretical models

Ratio sensitive to the color-dipole size in Color-Gass Condensate model.

Exotic search in exclusive events

Exotics in Inelastic pp collisions.

- pp \sqrt{s} =13 TeV
- Only two muons + two kaons detected in the event
- $2 < \eta < 5$ p_T>200 MeV/c
- 69% of $J/\psi\phi$ candidates from events where at least one proton is wounded
- LHCb detects $\phi \rightarrow K^+K^-$ decays in CEP and UPC PbPb
- 20% detection efficiency for $J/\psi\phi$ pairs

Exotic search in CEP events

LHCb-PAPER-2023-043 in preparation

- Peaks described by relativistic Breit-Wigner function convoluted with Gaussian
- Mass and widths fixed to values in PRL127 (2021) 082001

Exotic search in CEP events

LHCb-PAPER-2023-043 in preparation

First exotic measurement in events with no other activity.

Golden measurement to understand exotic production.

4/8/2024

Results coming up

• Near future

- Mass spectrum of K^+K^- pairs in UPC
 - Vector, scaler and tensor mesons from γ +pomeron, $\gamma + \gamma$ and double pomeron interaction
- Further future
 - UPC in pPb collisions
 - Resolves photon direction ambiguities
 - Incoherent J/ψ
 - probes gluon densities in individual nucleons
 - Control of fluctuations
 - ϕ photoproduction in UPC
 - Covers gluon density at lower Q^2 and x than J/ψ
 - Low-p_T τ g-2 from $\gamma\gamma \rightarrow \tau\tau$

The LHCb Upgrade I

Detector performance in 2023 PbPb run

Future Upgrades : New HeRSCheL

Replace radiation damaged scintillators. ϕ segmentation for reaction plane determination.

Future Upgrades : Magnet Station

Upgrade 2 talk in WG6: Mr Xuhao Yuan

- Instrument the internal magnet walls with a scintillator-based soft particle tracker
- tracking $p_T > 50 \text{ MeV/c}$
 - Essential to complete the UPC program
 - high-statistics low-mass vector, scalar and tensor mesons
 - Exotic hadrons with multiple decay products
 - Low-mass dielectrons and photon conversions
- Looking for US institutions to join a DOE proposal, installation starting during LS3
 4/8/2024

Take away

- LHCb is an ideal experiment for CEP,UPC studies. The sky is the limit, thanks to
 - Software-based trigger
 - Excellent particle identification
 - Low- p_T tracking
- First measurement of tetraquark states in exclusive events !
- LHCb is a new detector now and ready for Run3
- Future upgrades dedicated to CEP, UPC
- LHCb is a good example of a high data/people ratio in CEP and UPC physics
 - Heartbreaking opportunities missing because of the lack of people to do analysis
 - Upgrade 1b and II are very good opportunities to be part of the LHCb QCD programs

BACKUP

Trigger Conditions for UPC events

- long track (tracks with hits in all tracking detectors) [1,20]
- SPD hits (ECAL raw hits) < 2000
- Event selected by software
- NO pre-scale

Data sets

2015 PbPb 5 TeV	4 μb ⁻¹	۲
2018 PbPb 5 TeV	214 μb ⁻¹	-
2023 PbPb 5 TeV	~210 µb ⁻¹	

Herschel Detector Discrimination

- The Figure of Merit (left) is a χ^2 quantity that includes hits from all twenty counters and accounts for correlations among counters based on activity above the noise
 - By subtracting the background, an exclusive sample of signal events is obtained
- The p_T^2 distribution of dimuons (right) with and without the requirement on the $\log(\chi^2)$

$J/\psi,\psi$ (2S) Photo-production cross-section in CEP

- $\sigma_{pp \to p\psi p}(W)$ has contributions from photon coming from both forward and backward going proton in CMS
- Goal: Extract ψ photoproduction cross section $\sigma_{\gamma p \to \psi p}(W)$ from measured $\sigma_{pp \to p\psi p}(W)$ $W^2 \equiv 2k\sqrt{s}$ 30

$J/\psi, \psi$ (2S) Photo-production cross-section in CEP

$J/\psi, \psi$ (2S) Photo-production cross-section in CEP

