(Based on work with Yuri Kovchegov and Huachen Sun, arXiv:2311.12208)

Probing gluon saturation with novel ratio R_{UPC} in ultra-peripheral collisions

Kong Tu (BNL)

Heavy nuclei at high energy are strongly modified

Heavy nuclei at high energy are strongly modified

We know they exist, but we do not know (for sure) their underlying mechanisms.

Heavy nuclei at high energy are strongly modified

In this talk, I will focus on a **new measurement** that may find out the underlying mechanism at low-x.

Saturation of gluon density at high energy is expected

Saturation of gluon density at high energy is expected

Saturation is a nonlinear gluon dynamics that gluon splitting \sim gluon recombination \rightarrow Therefore, it is a low-x phenomenon.

(See details in other talks in this WG.)

Vector Meson photoproduction in heavyion ultra-peripheral collisions (UPCs)

At Leading Order, 2-gluon exchange

Coherent = nuclei stay intact Incoherent = nuclei break up

A clean probe to the gluon density and gluon spatial distribution

Large nuclear suppression (even) up to x ~ 0.03

Nuclear suppression was observed for both coherent and incoherent J/ψ photoproduction at RHIC, with incoherent being more suppressed.

Large nuclear suppression (even) up to x ~ 0.03

Nuclear suppression was observed for both coherent and incoherent J/ψ photoproduction at RHIC, with incoherent being more suppressed.

CGC saturation model, technically, has the limitation at the STAR's kinematics and data do not favor additional substructure with gluon density fluctuation.

Large nuclear suppression (even) up to x ~ 0.03

Nuclear suppression was observed for both coherent and incoherent J/ψ photoproduction at RHIC, with incoherent being more suppressed.

- CGC saturation model, technically, has the limitation at the STAR's kinematics and data do not favor additional substructure with gluon density fluctuation.
- LTA in nuclear shadowing model describes the coherent well, but not enough suppression for incoherent production.

Leading Twist Approximation in nuclear shadowing

ppression was observed for both coherent rent J/w photoproduction at RHIC, with t bein Leading Twist Approximation (LTA) Combination of Gribov-Glauber theory, QCD turat factorization, and HERA diffractive data h at the STAR's kinematics and data do r additional substructure with gluon density on.

L. Frankfrut,, V. Guzey, M. Strikman (Physics Reports 512 (2012) 255-393) in nuclear shadowing model describes the coherent well, but not enough suppression for W_{1'N} (GeV) incoherent production.

May not be exclusive to saturation, but certainly not identical. For example, proton target has no shadowing.

Large nuclear suppression down to x ~ 10⁻⁵

Both LTA shadowing models and saturation models can somewhat describe the higher energies.

Large nuclear suppression down to x ~ 10⁻⁵

A new proposal: double ratio in UPCs

A new proposal: double ratio in UPCs

Distinct expectation:

- Saturation: diffractive J/ψ is less suppressed than inclusive jet/h production.
- Shadowing: diffractive J/ψ is more suppressed than inclusive jet/h production

CGC: calculating the double ratio

$$R_{\rm UPC} = \frac{\left[\sigma_{\rm el}^{\rm VM} / \left(d\sigma_{\rm inclusive}^{\rm hadron/jet} / d^2 p_{\rm T} \right) \right]_{\gamma \rm A}}{\left[\sigma_{\rm el}^{\rm VM} / \left(d\sigma_{\rm inclusive}^{\rm hadron/jet} / d^2 p_{\rm T} \right) \right]_{\gamma \rm p}}$$

CGC: calculating the double ratio – Vector Meson (VM)

$$R_{\rm UPC} = \frac{\left[\sigma_{\rm el}^{\rm VM} \right] \left(d\sigma_{\rm inclusive}^{\rm hadron/jet} / d^2 p_{\rm T} \right)_{\gamma \rm A}}{\left[\sigma_{\rm el}^{\rm VM} / \left(d\sigma_{\rm inclusive}^{\rm hadron/jet} / d^2 p_{\rm T} \right)\right]_{\gamma \rm p}}$$

Standard CGC framework, dipole amplitude from BK/JIMWLK, GGM/MV model for initial condition, etc.

Two knobs to turn: the target and the probe

CGC: A-scaling for J/ ψ and ρ meson

$$R_{\rm UPC} = \frac{\left[\sigma_{\rm el}^{\rm VM} \right] \left(d\sigma_{\rm inclusive}^{\rm hadron/jet} / d^2 p_{\rm T} \right) \right]_{\gamma \rm A}}{\left[\sigma_{\rm el}^{\rm VM} / \left(d\sigma_{\rm inclusive}^{\rm hadron/jet} / d^2 p_{\rm T} \right) \right]_{\gamma \rm p}}$$

Standard CGC framework, dipole amplitude from BK/JIMWLK, GGM/MV model for initial condition, etc

ρ

$$\sigma_{\rm el}^{\gamma^* A \to V A} \propto \begin{cases} A^{4/3}, & {\rm outside \ the \ saturation \ region}, \\ A^{2/3}, & {\rm inside \ the \ saturation \ region}. \end{cases} egin{array}{c} {
m J/\psi} & \rho \end{cases}$$

CGC: calculating the double ratio – inclusive quark

$$R_{\rm UPC} = \frac{\left[\sigma_{\rm el}^{\rm VM} / \left({\rm d}\sigma_{\rm inclusive}^{\rm hadron/jet} / {\rm d}^2 {\rm p_T} \right) \right]_{\gamma \rm A}}{\left[\sigma_{\rm el}^{\rm VM} / \left({\rm d}\sigma_{\rm inclusive}^{\rm hadron/jet} / {\rm d}^2 {\rm p_T} \right) \right]_{\gamma \rm p}}$$

Similar calculations, except quark-antiquark pair doesn't become VM, target breaks up so no color-singlet, etc. **"X" is the measured parton.**

CGC: calculating the double ratio – inclusive quark

$$R_{\rm UPC} = \frac{\left[\sigma_{\rm el}^{\rm VM} / \left(d\sigma_{\rm inclusive}^{\rm hadron/jet} / d^2 p_{\rm T} \right) \right]_{\gamma \rm A}}{\left[\sigma_{\rm el}^{\rm VM} / \left(d\sigma_{\rm inclusive}^{\rm hadron/jet} / d^2 p_{\rm T} \right) \right]_{\gamma \rm p}}$$

Similar calculations, except quark-antiquark pair doesn't become VM, target breaks up so no color-singlet, etc. **"X" is the measured parton.**

$$\frac{d\sigma}{d^2 p_T} \propto \begin{cases} A, & p_T \gg Q_s, \\ A^{2/3}, & p_T \ll Q_s. \end{cases}$$

CGC: A-scaling for J/ ψ and ρ meson

Shadowing model prediction for R_{UPC}?

Measurement at RHIC and the LHC

All LHC experiments will have significant upgrades in Run 3 & 4 (e.g., wide acceptances, ALICE FoCal, etc.). **Lower-x reach!**

Measurement at RHIC and the LHC

Connection to the Electron-Ion Collider

Similar idea from the EIC white paper with diffractive DIS and total DIS cross section.

Summary: double ratio R_{UPC} for understanding the low-x nuclear suppression

- One of the most pressing questions in UPC VM measurements is to confirm or validate models.
- New observable R_{UPC} may shine new light to this question
- RHIC and LHC provide a wide range of energy to test R_{UPC} and may have a few different nuclei to see the A dependence.

$$R_{\rm UPC} = \frac{\left[\sigma_{\rm el}^{\rm VM} / \left(d\sigma_{\rm inclusive}^{\rm hadron/jet} / d^2 p_{\rm T} \right) \right]_{\gamma \rm A}}{\left[\sigma_{\rm el}^{\rm VM} / \left(d\sigma_{\rm inclusive}^{\rm hadron/jet} / d^2 p_{\rm T} \right) \right]_{\gamma \rm p}}$$

"Every genuine test of a theory is an attempt to falsify it, or to refute it" – Karl Popper.

Thank you!

Backup

Most, if not all, data and model comparisons are like these

PRL 131 (2023) 262301

Most, if not all, data and model comparisons are like these

Most, if not all, data and model comparisons are like these

A. Double ratio in the quasi-classical approximation

1. Elastic J/ψ and ρ production: heuristic estimates and numerical integration

In Eq. (4) (or Eq. (17)), the dipole amplitude $N(\mathbf{r}, b, Y)$ describes the interaction of the quark-antiquark pair with the target nucleus. In processes where saturation effects are taken into account, one has to include multiple gluon exchanges between the $q\bar{q}$ pair and the nucleus. Including *t*-channel gluon exchanges to all orders in the GGM/MV model leads to the dipole amplitude [25]

$$N(\mathbf{r}, \mathbf{b}, Y) = 1 - \exp\left\{-\frac{r_{\perp}^2 Q_s^2(\mathbf{b})}{4} \ln \frac{1}{r_{\perp} \Lambda}\right\}$$
(22)

with the saturation scale Q_s given by

$$Q_s^2(\mathbf{b}) = 4\pi \alpha_s^2 \frac{C_F}{N_c} T(\mathbf{b}).$$
⁽²³⁾

Here $T(\mathbf{b})$ is the nuclear profile (thickness) function,

$$T(\mathbf{b}) \equiv \int_{-\infty}^{\infty} dz \,\rho(\mathbf{b}, z),\tag{24}$$

where $\rho(\mathbf{b}, z)$ is the nucleon number density in the nucleus, Λ is the infrared (IR) cutoff, and C_F is the fundamental Casimir operator of $SU(N_c)$. We should point out that the dipole amplitude given in Eq. (22) does not include small-x evolution: this is why $Q_s^2(\mathbf{b})$ here is independent of energy/rapidity Y, leading to similarly energy-independent dipole amplitude $N(\mathbf{r}, \mathbf{b}, Y)$ in Eq. (22).

Our goal now is to determine the dependence of the elastic VM production cross section on the atomic number A. After a closer inspection of Eq. (17), we see that the A-dependence is contained entirely in the **b**-integral

$$\int d^2 b_\perp N(r_\perp, b_\perp, Y) N(r'_\perp, b_\perp, Y) \tag{25}$$

over the transverse area of the nucleus. This integral is hard to evaluate exactly analytically. Therefore, we have to make approximations for the dipole amplitude $N(\mathbf{r}, \mathbf{b}, Y)$ based on whether r_{\perp} and r'_{\perp} are larger or smaller than $1/Q_s(\mathbf{b})$, which corresponds to the dipole r_{\perp} and/or the dipole r'_{\perp} being inside or outside the saturation regime (see Fig. 5). Since the integrations over r_{\perp} and r'_{\perp} range over all positive values between 0 and ∞ , we have three cases to consider: (i) $r_{\perp}, r'_{\perp} \ll 1/Q_s$, (ii) $r_{\perp}, r'_{\perp} \gtrsim 1/Q_s$, and (iii) $r_{\perp} \ll 1/Q_s, r'_{\perp} \gtrsim 1/Q_s$. The case when $r'_{\perp} \ll 1/Q_s, r_{\perp} \gtrsim 1/Q_s$ gives the same contribution as the case (iii), due to the $\mathbf{r} \leftrightarrow \mathbf{r}'$ symmetry of Eq. (17). As follows from Eq. (17), the dipole sized r_{\perp} and r'_{\perp} are controlled by the convolutions of the virtual photon and vector meson wave functions with the dipole size dependence of the amplitude N.

In these three regions we obtain different A-scaling, using the following arguments:

$$N(\mathbf{r}, \mathbf{b}, Y) \bigg|_{r_{\perp} Q_s(\mathbf{b}) \ll 1} \approx \frac{r_{\perp}^2 Q_s^2(\mathbf{b})}{4} \ln \frac{1}{r_{\perp} \Lambda} \propto A^{1/3},$$
(26a)

$$N(\mathbf{r}', \mathbf{b}, Y) \bigg|_{r'_{\perp} Q_s(\mathbf{b}) \ll 1} \approx \frac{r'_{\perp} Q_s^2(\mathbf{b})}{4} \ln \frac{1}{r'_{\perp} \Lambda} \propto A^{1/3}, \tag{26b}$$

where the last proportionality follows from $Q_s^2(\mathbf{b}) \propto T(\mathbf{b}) \propto A^{1/3}$. Since the area integral scales as $\int d^2b_{\perp} \sim A^{2/3}$, we conclude that

$$\int d^2 b_\perp N(\mathbf{r}, \mathbf{b}, Y) N(\mathbf{r}', \mathbf{b}, Y) \bigg|_{r_\perp, r'_\perp \ll 1/Q_s} \propto A^{4/3}.$$
(27)

(ii) $r_{\perp}, r'_{\perp} \gtrsim 1/Q_s$: Inside the saturation region we approximate

$$N(\mathbf{r}, \mathbf{b}, Y) \bigg|_{r_{\perp} Q_s(\mathbf{b}) \gtrsim 1} \approx N(\mathbf{r}', \mathbf{b}, Y) \bigg|_{r_{\perp}' Q_s(\mathbf{b}) \gtrsim 1} \approx 1,$$
(28)

such that

$$\int d^2 b_\perp N(\mathbf{r}, \mathbf{b}, Y) N(\mathbf{r}', \mathbf{b}, Y) \left|_{r_\perp, r'_\perp \gtrsim 1/Q_s} \propto A^{2/3}.$$
(29)

(iii) $r_{\perp} \ll 1/Q_s, r'_{\perp} \gtrsim 1/Q_s$ (or $r'_{\perp} \ll 1/Q_s, r_{\perp} \gtrsim 1/Q_s$): With one dipole being outside the saturation region, and another one being inside, we have

$$\left. \left(\mathbf{r}, \mathbf{b}, Y \right) \right|_{r_{\perp} Q_s(\mathbf{b}) \ll 1} \approx \frac{r_{\perp}^2 Q_s^2}{4} \ln \frac{1}{r_{\perp} \Lambda}, \tag{30a}$$

$$N(\mathbf{r}', \mathbf{b}, Y)\Big|_{r'_{\perp} Q_{s}(\mathbf{b}) \gtrsim 1} \approx 1.$$
(30b)

This leads to

$$\left. \int d^2 b_{\perp} N(\mathbf{r}, \mathbf{b}, Y) N(\mathbf{r}', \mathbf{b}, Y) \right|_{r_{\perp} \ll 1/Q_s, r'_{\perp} \gtrsim 1/Q_s} \propto A.$$
(31)

Hence, we conclude that the elastic vector meson production cross section scales with A as a power of A,

N

$$\tau_{\rm el}^{\gamma^* A \to V A} \propto A^{\alpha}, \tag{32}$$

with α between 2/3 and 4/3. The precise power of the scaling depends on the size of the vector meson: if the size of the vector meson is small (e.g., J/ψ), then the integral contribution would be dominated by region (i), and $\sigma_{\rm el}^{\gamma^* \Lambda \to \rho \Lambda} \propto A^{4/3}$; if the size of the vector meson is large (e.g., ρ), then the integral contribution would be dominated by region (iii), and $\sigma_{\rm el}^{\gamma^* \Lambda \to \rho \Lambda} \propto A^{2/3}$. Therefore, a transition from outside the saturation region into the saturation region should lead to the decrease of the (effective) power α defined in Eq. (32).

Notice that in Eq. (17) the integrand as a function of the dipole sizes r_{\perp} and r'_{\perp} is dominated by the Gaussian and the modified Bessel functions (which decrease exponentially at large r_{\perp} and r'_{\perp}), so that the main contribution comes from the regions where $r_{\perp}, r'_{\perp} < \frac{1}{a_f}$, R. For J/ψ production in UPCs, where $Q^2 \approx 0$ and $a_f \approx m_c \approx 1.27$ GeV, this corresponds to $r_{\perp}, r'_{\perp} < \frac{1}{m_c} \approx 0.79$ GeV⁻¹. At relatively low x (x between 10^{-3} and 10^{-4}), the typical saturation scale for a gold nucleus (A = 197) is about $Q_s \approx 1$ GeV (see, e.g., Fig. 3.14 in [9]). We see that the r_{\perp}, r'_{\perp} -integrals in Eq. (17) are dominated by the non-saturated region (i), so that $\sigma^{\gamma^* A \to J/\psi A} \propto A^{4/3}$. However, these integrals do include contributions from larger r_{\perp}, r'_{\perp} , coming from the saturation region. Therefore, in an exact evaluation of Eq. (17), one may expect to see an A-scaling that is slightly slower than $A^{4/3}$, especially at the largest A when $1/Q_s$ starts to become comparable to the size of J/ψ and saturation effects start to settle in.