The XXXI International Workshop on Deep Inelastic Scattering (DIS2024)

Diffractive measurements at CMS and TOTEM

09 April 2023 Michael Pitt*

The University of Kansas * also with the Ben Gurion University of the Negev

On behalf of the CMS and TOTEM Collaborations

Diffractive interactions at the LHC

• t-channel exchange of color neutral particles (QED, QCD)

- Spans over large kinematic region (MeV TeV), and large cross-section range
- Provide a rich scientific program for LHC experiments

Soft diffraction: Purely nonperturbative processes

Hard diffraction: Substantial fraction of proton kinetic energy is transferred (~a few%)

See Ronan McNulty's talk

Diffractive interactions at the LHC

• t-channel exchange of color neutral particles (QED, QCD)

- Spans over large kinematic region (MeV TeV), and large cross-section range
- Provide a rich scientific program for LHC experiments
 See Ronan McNulty's talk
 Soft diffraction: Purely nonperturbative processes
 New results
 Hard diffraction: Substantial fraction of proton kinetic energy is transferred (~a few%)

Soft central exclusive production processes

- A clean laboratory for the study of various nonperturbative phenomena (glueballs, ...)
- Dominated by double-pomeron exchange (DPE) at high momentum transfer (t)

First measurements of exclusive di-pions

- Imposed rapidity gap selection criteria (DPE + Photoproduction)
- Resonant production at 5.02 and 13 TeV data

- Measured production cross-section in the pT>0.2 GeV, |η|<2.4 fiducial region
- Modeled by Breit-Wigner functions * Gaussian

Resonance	$\sigma_{\mathrm{pp} ightarrow \mathrm{p'p'} X ightarrow \mathrm{p'p'} \pi^+ \pi^-} [\mu \mathrm{b}]$				
	$\sqrt{s} = 5.02 \mathrm{TeV}$	$\sqrt{s} = 13 \mathrm{TeV}$			
$f_0(500)$	$1.4\pm0.7(\mathrm{stat})\pm0.4(\mathrm{syst})\pm0.03(\mathrm{lumi})$	$1.2\pm0.5(ext{stat})\pm0.4(ext{syst})\pm0.03(ext{lumi})$			
$ ho^{0}(770)$	2.6 ± 0.6 (stat) ± 0.6 (syst) ± 0.1 (lumi)	$2.4\pm0.8(\mathrm{stat})\pm0.6(\mathrm{syst})\pm0.1(\mathrm{lumi})$			
$f_0(980)$	$0.4\pm0.1(\mathrm{stat})\pm0.1(\mathrm{syst})\pm0.01(\mathrm{lumi})$	$0.7\pm0.2(\mathrm{stat})\pm0.2(\mathrm{syst})\pm0.02(\mathrm{lumi})$			
$f_2(1270)$	2.2 ± 0.4 (stat) ± 0.3 (syst) ± 0.1 (lumi)	2.3 ± 0.5 (stat) ± 0.3 (syst) ± 0.1 (lumi)			

EPJC 80 (2020) 718

Nonresonant central exclusive production

$$\mathcal{M} = \mathcal{M}_{13}(t_1, s_{13}) \frac{F_m^2(\hat{t})}{\hat{t} - m^2} \mathcal{M}_{24}(t_2, 24) + \hat{t} \leftrightarrow \hat{u} + \mathcal{M}_{res}$$

Nonresonant central exclusive production

Proton – Pomeron interaction ($\sim s^{\alpha_{IP}}$): $\mathcal{M}_{ik}(t,s) = i\sigma_0(s/s_0)^{\alpha_{IP}(t)}\mathcal{F}_p(t)$

Where $\mathcal{F}_p(t)$ is the proton-pomeron Form Factor

7

$$\mathcal{M} = \mathcal{M}_{13}(t_1, s_{13}) \frac{F_m^2(\hat{t})}{\hat{t} - m^2} \mathcal{M}_{24}(t_2, 24) + \hat{t} \leftrightarrow \hat{u} + \mathcal{M}_{res}$$

Nonresonant central exclusive production

Proton – Pomeron interaction (~ $s^{\alpha_{IP}}$): $\mathcal{M}_{ik}(t,s) = i\sigma_0(s/s_0)^{\alpha_{IP}(t)}\mathcal{F}_p(t)$

Where $\mathcal{F}_p(t)$ is the proton-pomeron Form Factor

Pomeron – meson interaction: $\frac{1}{\hat{t}-m^2}F_m^2(\hat{t})$

Where $\mathcal{F}_m^2(\hat{t})$ is the off-shell meson Form Factor

8

$$\mathcal{M} = \mathcal{M}_{13}(t_1, s_{13}) \frac{F_m^2(\hat{t})}{\hat{t} - m^2} \mathcal{M}_{24}(t_2, 24) + \hat{t} \leftrightarrow \hat{u} + \mathcal{M}_{res}$$

Nonresonant central exclusive production

Proton – Pomeron interaction (~ $s^{\alpha_{IP}}$): $\mathcal{M}_{ik}(t,s) = i\sigma_0(s/s_0)^{\alpha_{IP}(t)}\mathcal{F}_p(t)$ Where $\mathcal{F}_{p}(t)$ is the proton-pomeron Form Factor Pomeron – meson interaction: $\frac{1}{\hat{t}-m^2}F_m^2(\hat{t})$ Where $\mathcal{F}_m^2(\hat{t})$ is the off-shell meson Form Factor **Rescattering amplitude** $\mathcal{M}_{res} = \int d^2 \vec{k}_T \mathcal{M}(p_1 - k_T, p_2 - k_T) \mathcal{F}_p(t'_1) \mathcal{F}_p(t'_2) S(k_T)$

$$\mathcal{M} = \mathcal{M}_{13}(t_1, s_{13}) \frac{F_m^2(\hat{t})}{\hat{t} - m^2} \mathcal{M}_{24}(t_2, 24) + \hat{t} \leftrightarrow \hat{u} + \mathcal{M}_{res}$$

Nonresonant central exclusive production

Nonresonant central exclusive production

Nonresonant central exclusive production

• Proton-pomeron Form Factor $\mathcal{F}_p(t)$:

One channel model:

$$\mathcal{F}_p(t) = e^{B/2t}$$

Nonresonant central exclusive production

• Proton-pomeron Form Factor $\mathcal{F}_p(t)$:

One channel model:

$$\mathcal{F}_p(t) = e^{B/2t}$$

Two-channels model (two diffractive states)

 $p(p_a)$

$$|p\rangle = a_i |\phi_i\rangle$$
, with coupling γ_i
 $\mathcal{F}_i(t) = e^{-[b_i(c_i-t)]^{d_i} + [b_i c_i]^{d_i}}$

 $p(p_1)$

Nonresonant central exclusive production

• Proton-pomeron Form Factor $\mathcal{F}_p(t)$:

One channel model:

$$\mathcal{F}_p(t) = e^{B/2t}$$

Two-channels model (two diffractive states)

 $p(p_a)$

$$|p\rangle = a_i |\phi_i\rangle$$
, with coupling γ_i
 $\mathcal{F}_i(t) = e^{-[b_i(c_i-t)]^{d_i} + [b_i c_i]^{d_i}}$

• Pomeron-meson Form Factor $\mathcal{F}_m(t)$:

$$\begin{split} & \overset{h^+(p_3)}{\longleftarrow} \quad F_m(\hat{t}) = \begin{cases} \exp(b_{\exp}(\hat{t} - m^2)), & \text{Exponential} \\ \exp(b_{\text{ore}}[a_{\text{ore}} - \sqrt{a_{\text{ore}}^2 - (\hat{t} - m^2)}]), & \text{Orear, PRL 12 (1964) 112} \\ 1/(1 - b_{\text{pow}}(\hat{t} - m^2)) & \text{Power-law} \end{cases} \end{split}$$

 $\mathbf{p}(p_1)$

Nonresonant central exclusive production – MC model

Implemented in DIME event generator <u>https://dimemc.hepforge.org/</u>

Parameter	DIME-1	Dime-2	DIME-3	DIME-4	Remark
$\sigma_P \; [mb]$	23	33	60	50	pomeron strength
$lpha_P$	1.13	1.115	1.093	1.11	pomeron intercept, $=1+\Delta$
$lpha_P' \; [{ m GeV}^{-2}]$	0.08	0.11	0.075	0.06	pomeron slope
γ_i	1 ± 0.55	1 ± 0.4	1 ± 0.42	1 ± 0.47	dimensionless coupling to eigenstate i
$2 a_i ^2$	1 ± 0.08	1 ± 0.5	1 ± 0.52	1 ± 0.5	a_i is the amplitude of eigenstate i
$b_1 \; [\text{GeV}^{-2}]$	8.5	8	5.3	7.2	
$b_2 \; [\text{GeV}^{-2}]$	4.5	6	3.8	4.2	
$c_1 \; [\mathrm{GeV}^2]$	0.18	0.18	0.35	0.53	nomeron coupling to signature
$c_2 \; [\text{GeV}^2]$	0.58	0.58	0.18	0.24	pomeron coupling to eigenstates
d_1	0.45	0.63	0.55	0.6	
d_2	0.45	0.47	0.48	0.48	,

Harland-Lang, Khoze, Ryskin, EPJC 74 (2014) 2848

Nonresonant central exclusive production

- φ distribution is connected to the quantum mechanical amplitude of the process
- Di-pion production data can be fitted with a simple functional form

$$\frac{d^3\sigma}{dp_{1,T}dp_{2,T}d\phi} = [A(R - \cos\phi)]^2 + c^2$$

- Dip at $\phi = a\cos(R)$ can be understood as an effect of additional pomeron exchanges, resulting from the bare and rescattered amplitudes
- Free parameters can be fitted using model-motivated functional forms
 <u>PLB 464 (1999) 279</u>, <u>PLB 477 (2000) 13</u>

$$\begin{split} A(t_1, t_2) &= 4\sqrt{t_1 t_2} A_0 \mathrm{e}^{b(t_1 + t_2)}, \\ R(t_1, t_2) &\approx \frac{1.2(\sqrt{-t_1} + \sqrt{-t_2}) - 1.6\sqrt{t_1 t_2} - 0.8}{\sqrt{t_1 t_2} + 0.1}, \\ c(t_1, t_2) &= c_0 \mathrm{e}^{d(t_1 + t_2)}. \end{split}$$

Proton tagging

Tagging scattered protons \rightarrow tagging diffractive events

• TOTEM: TOTal cross section Elastic scattering and diffraction dissociation Measurements at the LHC

M. Pitt @ DIS2024

 Protons scattered at small angles are deflected away from the beam and measured by forward detectors.

- Two arms (sector 45 and 56)
- Two stations (at ~213 and 220m)
- Top and bottom pots
- Each station has 5+5 panes ('v' and 'u')
- Each plane has 4x128 strips

Proton tagging

Tagging scattered protons \rightarrow tagging diffractive events

- TOTEM: TOTal cross section Elastic scattering and diffraction dissociation Measurements at the LHC
- Protons scattered at small angles are deflected away from the beam and measured by forward detectors.

- Two arms (sector 45 and 56)
- Two stations (at ~213 and 220m)
- Top and bottom pots
- Each station has 5+5 panes ('v' and 'u')
- Each plane has 4x128 strips

Detectors are operational only at low beam intensity

Analysis overview

Using data collected by CMS + TOTEM experiments in 2018 to utilize proton tagging

- Data recorded during LHC special high-β* runs
- Events are triggered by forward proton detectors in 4 configurations: TT TB BT BB
 - TB&BT: elastic veto was applied (trigger level)
 - Proton acceptance $0.175 < p_y < 0.670$ GeV
 - Hadron track acceptance $p_T > 0.1 \text{ GeV}$
 - 2 tracks + 2 protons at the final state

arXiv:2401.14494

(Accepted for publication in PRD)

Proton reconstruction efficiency

Coverage: Partial, Full

Proton – track matching

 Sum of the scattered proton and central hadron momenta and the sum of the scattered proton momenta

 Σ_4 proton and central hadron Σ_2 only scattered protons

TT/BB topology: kinematic cut at p_y>175 MeV is visible

TB/BT topology: Elastic protons (pileup) are visible

In all topologies inelastic backgrounds is present (a slanted area)

Reconstruction of charged particles in CMS

Performance of the CMS tracker

- Particle ID based on dE/dX measurement, and probability $P_h(\varepsilon, p)$ is contracted
- Select 2 track events of the same type: $P_{2,h} \cdot P_{2,h} > 10 \cdot P_{1,k} \cdot P_{1,k}$ for $k \neq h$

Reconstruction of charged particles in CMS

Performance of the CMS tracker

- Particle ID based on dE/dX measurement, and probability $P_h(\varepsilon, p)$ is contracted
- Select 2 track events of the same type: $P_{2,h} \cdot P_{2,h} > 10 \cdot P_{1,k} \cdot P_{1,k}$ for $k \neq h$
- Impose track-RP matching protons suppressed due to limited energy

Reconstruction of charged particles in CMS

Performance of the CMS tracker

• The combined reconstruction and High-Level Trigger efficiency

Event classification

• Based on the distributions $\vec{\Sigma}_2 = (\Sigma_2 p_X, \Sigma_2 p_Y)$, and $\vec{\Sigma}_2 = (\Sigma_2 p_X, \Sigma_2 p_Y)$ a classification variables (Mahalanobis distance) are constructed $\chi(\vec{\Sigma}) = \sqrt{\vec{\Sigma}^T V^{-1}\vec{\Sigma}}$, where $V(\Sigma)$ is the covariance matrix

Background subtraction

• Fitting the background component k, we can estimate background contamination in the signal region: $\int_0^{\chi_{SR}} \chi e^{-k\chi} = \int_{\chi_{SR}}^{\chi_{SR}} \chi e^{-k\chi}$, sensitive to fitted k parameter

Background subtraction

• Fitting the background component k, we can estimate background contamination in the signal region: $\int_{0}^{\chi_{SR}} \chi e^{-k\chi} = \int_{\chi_{SR}}^{\chi_{SR}} \chi e^{-k\chi}$, sensitive to fitted k parameter

Background subtraction

• Fitting the background component k, we can estimate background contamination in the signal region: $\int_{0}^{\chi_{SR}} \chi e^{-k\chi} = \int_{\chi_{SR}}^{\chi_{SR}} \chi e^{-k\chi}$, sensitive to fitted k parameter

Systematics

• Several sources, reasonable systematics (~5%)

Source	Value	Remark
Pileup correction	1.0%	through visible cross section (σ_{vis})
Lumisections with reduced RP availability	0.5%	
Integrated luminosity (L_{int})	2.5%	
HLT efficiency	small	neglected
Total normalisation-type	2.7%	
Roman pot efficiency	pprox 3.0%	to be taken twice
Background removal	< 0.5%	neglected
Lost events during background removal	-0.16%	neglected
Lost events due to looper cut	< 0.5%	neglected
Single particle tracking efficiency	1.4%	to be taken twice
Particle identification efficiency	< 1%	neglected
Total efficiency-type	4.7%	
Total systematics	5.4%	

• Measure differential cross-section if di-pions as a function of ϕ in p_T bins, $\mu b/GeV^2$

30

• From ϕ distributions parameters A, R, c as a function of p_T are fitted

- From $\boldsymbol{\phi}$ distributions Form-Factor are fitted
- Tuning is done with PROFESSOR (v2.3.3)

Parameter	Exponential	Orear-type	Power-law	Dime 1 / 2	_
Empirical model					
a _{ore} [GeV]		0.735 ± 0.015			
$b_{\rm exp/ore/pow}[{ m GeV}^{-2 ext{ or } -1}]$	1.084 ± 0.004	1.782 ± 0.014	1.356 ± 0.001		
$B_{\mathbb{I}}[\text{GeV}^{-2}]$	3.757 ± 0.033	3.934 ± 0.027	4.159 ± 0.019		
χ^2 /dof	9470/5796	10059/5795	11409/5796		
One-channel model					
$\sigma_0[\mathrm{mb}]$	34.99 ± 0.79	27.98 ± 0.40	26.87 ± 0.30		
$lpha_P-1$	0.129 ± 0.002	0.127 ± 0.001	0.134 ± 0.001		
$\alpha'_P [\text{GeV}^{-2}]$	0.084 ± 0.005	0.034 ± 0.002	0.037 ± 0.002		
a _{ore} [GeV]	—	0.578 ± 0.022	_		
$b_{\rm exp/ore/pow}[{ m GeV}^{-2 ext{ or } -1}]$	0.820 ± 0.011	1.385 ± 0.015	1.222 ± 0.004		
$B_{\mathbb{P}}[\text{GeV}^{-2}]$	2.745 ± 0.046	4.271 ± 0.021	4.072 ± 0.017		
χ^2/dof	7356/5793	7448/5792	8339/5793		
Two-channel model					
$\sigma_0[mb]$	20.97 ± 0.48	22.89 ± 0.17	23.02 ± 0.23	23 / 33	•
$lpha_P - 1$	0.136 ± 0.001	0.129 ± 0.001	0.131 ± 0.001	0.13 / 0.115	
$\alpha'_P [\text{GeV}^{-2}]$	0.078 ± 0.001	0.075 ± 0.001	0.071 ± 0.001	0.08 / 0.11	
$a_{\rm ore}[{\rm GeV}]$	—	0.718 ± 0.012	_		
$b_{\rm exp/ore/pow}[{ m GeV}^{-2 ext{ or } -1}]$	0.917 ± 0.007	1.517 ± 0.008	0.931 ± 0.002	0.45	
$\Delta \hat{a} ^2$	0.070 ± 0.026	-0.058 ± 0.009	0.042 ± 0.011	-0.04 / -0.25	
$\Delta\gamma$	0.052 ± 0.042	0.131 ± 0.018	0.273 ± 0.023	0.55 / 0.4	
$b_1 [\text{GeV}^2]$	8.438 ± 0.108	8.951 ± 0.041	8.877 ± 0.040	8.5 / 8.0	
$c_1 [\text{GeV}^2]$	0.298 ± 0.012	0.278 ± 0.004	0.266 ± 0.006	0.18 / 0.18	
d_1	0.472 ± 0.007	0.465 ± 0.002	0.465 ± 0.003	0.45 / 0.63	
$b_2 [\text{GeV}^2]$	4.982 ± 0.133	4.222 ± 0.052	4.780 ± 0.060	4.5 / 6.0	
$c_2 [\text{GeV}^2]$	0.542 ± 0.015	0.522 ± 0.006	0.615 ± 0.006	0.58 / 0.58	
d_2	0.453 ± 0.009	0.452 ± 0.003	0.431 ± 0.004	0.45 / 0.47	M. Pitt @ DIS2024
χ^2/dof	5741/5786	6415/5785	7879/5786		

Diffractive Model

(Proton-pomeron FF + Rescattering)

- Empirical
- One-channel
- Two-channels
- Pomeron-meson Form Factor
 - Exponential
 - > Orear-type
 - Power-low

- From $\boldsymbol{\phi}$ distributions Form-Factor are fitted
- Tuning is done with PROFESSOR (v2.3.3)

Parameter	Exponential	Orear-type	Power-law	Dime 1 / 2	
Empirical model					_
$a_{\rm ore}[{\rm GeV}]$	_	0.735 ± 0.015	—		
$b_{\rm exp/ore/pow} [{\rm GeV}^{-2 \text{ or } -1}]$	1.084 ± 0.004	1.782 ± 0.014	1.356 ± 0.001		
$B_{\mathbb{P}}[\text{GeV}^{-2}]$	3.757 ± 0.033	3.934 ± 0.027	4.159 ± 0.019		
χ^2/dof	9470/5796	10059/5795	11409/5796		
One-channel model					
$\sigma_0[\mathrm{mb}]$	34.99 ± 0.79	27.98 ± 0.40	26.87 ± 0.30		
$lpha_P-1$	0.129 ± 0.002	0.127 ± 0.001	0.134 ± 0.001		
$\alpha'_P [\text{GeV}^{-2}]$	0.084 ± 0.005	0.034 ± 0.002	0.037 ± 0.002		
a _{oro} [GeV]		0.578 ± 0.022			
$b_{\rm exp/ore/pow}[{ m GeV}^{-2 { m or} -1}]$	0.820 ± 0.011	1.385 ± 0.015	1.222 ± 0.004		
$B_{\mathbb{P}} [\text{GeV}^{-2}]$	2.745 ± 0.046	4.271 ± 0.021	4.072 ± 0.017		
χ^2 /dof	7356/5793	7448/5792	8339/5793		
Two-channel model					
$\sigma_0[\mathrm{mb}]$	20.97 ± 0.48	22.89 ± 0.17	23.02 ± 0.23	23 / 33	
$lpha_P-1$	0.136 ± 0.001	0.129 ± 0.001	0.131 ± 0.001	0.13 / 0.115	
$\alpha'_P [\text{GeV}^{-2}]$	0.078 ± 0.001	0.075 ± 0.001	0.071 ± 0.001	0.08 / 0.11	
a _{ore} [GeV]		0.718 ± 0.012			
$b_{\rm exp/ore/pow}[{ m GeV}^{-2 ext{ or } -1}]$	0.917 ± 0.007	1.517 ± 0.008	0.931 ± 0.002	0.45	
$\Delta a ^2$	0.070 ± 0.026	-0.058 ± 0.009	0.042 ± 0.011	-0.04 / -0.25	
$\Delta\gamma$	0.052 ± 0.042	0.131 ± 0.018	0.273 ± 0.023	0.55 / 0.4	
$b_1 [\text{GeV}^2]$	8.438 ± 0.108	8.951 ± 0.041	8.877 ± 0.040	8.5 / 8.0	
$c_1 [\text{GeV}^2]$	0.298 ± 0.012	0.278 ± 0.004	0.266 ± 0.006	0.18 / 0.18	
d_1	0.472 ± 0.007	0.465 ± 0.002	0.465 ± 0.003	0.45 / 0.63	
$b_2 [\text{GeV}^2]$	4.982 ± 0.133	4.222 ± 0.052	4.780 ± 0.060	4.5 / 6.0	
$c_2 [\text{GeV}^2]$	0.542 ± 0.015	0.522 ± 0.006	0.615 ± 0.006	0.58 / 0.58	
d_2	0.453 ± 0.009	0.452 ± 0.003	0.431 ± 0.004	0.45 / 0.47	M. Pitt
χ^2/dof	5741/5786	6415/5785	7879/5786		

Diffractive Model

(Proton-pomeron FF + Rescattering)

- Empirical
- One-channel
- Two-channels
- Pomeron-meson Form Factor
 - Exponential
 - > Orear-type
 - Power-low

@ DIS2024

- From $\boldsymbol{\phi}$ distributions Form-Factor are fitted
- Tuning is done with PROFESSOR (v2.3.3)

Diffractive Model

(Proton-pomeron FF + Rescattering)

- Empirical
- One-channel
- Two-channels
- Pomeron-meson Form Factor
 - Exponential
 - > Orear-type
 - > Power-low

- From $\boldsymbol{\phi}$ distributions Form-Factor are fitted
- Tuning is done with PROFESSOR (v2.3.3)

Diffractive Model

(Proton-pomeron FF + Rescattering)

- ➤ Empirical
- One-channel
- Two-channels
- Pomeron-meson Form Factor
 - Exponential
 - > Orear-type
 - Power-low

parameter

- From ϕ distributions Form-Factor are fitted
- Tuning is done with PROFESSOR (v2.3.3)

- From $\boldsymbol{\phi}$ distributions Form-Factor are fitted
- Tuning is done with PROFESSOR (v2.3.3)
- Two channel fit for different pomeron meson form factors

• Fitted distributions shows a good quality – a ground state protons is enough?

M. Pitt @ DIS2024

- Fitted distributions shows a good quality a ground state protons is enough?
- Virtual hadrons important to fix the value of b_{exp} from 0.45 to 0.9 GeV⁻²

Summary and discussion

Analysis

- ✓ Central exclusive production of charged pions at 13 TeV in resonance-free region
- ✓ Differential cross-sections in bins of $[p_{1T}, p_{2T}]$
- \checkmark Azimuthal angle ϕ between the surviving protons

- \checkmark First observation of parabolic minimum in ϕ distribution
 - Interference of the bare and the rescattered amplitudes
- ✓ First model tunning of pomeron related quantities
- ✓ Good quality fits

Summary and discussion

Analysis

- ✓ Central exclusive production of charged pions at 13 TeV in resonance-free region
- ✓ Differential cross-sections in bins of $[p_{1T}, p_{2T}]$
- \checkmark Azimuthal angle ϕ between the surviving protons

- \checkmark First observation of parabolic minimum in ϕ distribution
 - Interference of the bare and the rescattered amplitudes
- ✓ First model tunning of pomeron related quantities
- ✓ Good quality fits

• Measure differential cross-section if di-pions as a function of ϕ in p_T bins, μ b/GeV²

• Measure differential cross-section if di-pions as a function of ϕ in p_T bins, $\mu b/GeV^2$

• Measure differential cross-section if di-pions as a function of ϕ in p_T bins, $\mu b/GeV^2$

