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Key question: what is the origin 
of shadowing at high energies?

H1 and Zeus, EPCJ 75 (2015) 580

Saturation is expected to set at 
higher x in heavy nuclei
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The dipole produces a vector meson

Diffractive coherent interaction: 
colourless exchange off the full nucleus 

x =
m

s
e−y =

m2

W2

Centre-of-mass of the 
photon-Pb system

Rapidity measured w.r.t. the 
direction of the target

Rapidity (y), mass (m), and pT of the 
vector meson fully define the kinema3cs

−t ≈ p2
T

Mandelstam t, square of 
momentum transferred
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1

2

Two photon sources

1 2

Photonuclear cross sections at two rapidities, i.e. Bjorken-x

What we want

How to extract the photo-nuclear cross sec8on if the photon fluxes are known?

Guillermo Contreras, CTU in Prague 
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Ambiguity problem: one solu3on, go to corners of phase space

5

At y=0 both contributions 
are equal, no ambiguity

At forward rapidities           dominates (95% of the cross section),2

Guzey et al, Phys.Le\. B726 (2013) 290-295

1 2

Guillermo Contreras, CTU in Prague 

2 1



Ambiguity problem: another solu3on, perform independent measurements

6

Perform two independent measurements at the same rapidity, 
but different impact parameter, then solve the equa3ons.

Guillermo Contreras, CTU in Prague 



Ambiguity problem: another solu3on, perform independent measurements

6

Perform two independent measurements at the same rapidity, 
but different impact parameter, then solve the equa3ons.

Guillermo Contreras, CTU in Prague 



For example, use peripheral and ultra-peripheral collisions 

Ambiguity problem: another solu3on, perform independent measurements

6

Perform two independent measurements at the same rapidity, 
but different impact parameter, then solve the equa3ons.

JGC, PRC 96, 015203 (2017) 
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To study the evolu3on of the nuclear structure in 
Bjorken-x, a large rapidity coverage is need

x =
m

s
e−y =

m2

W2

J/ψ → l+l−, |y | < 0.8

Zero degree calorimeters (ZDC) at 
±112.5 m from the centre of ALICE

J/ψ → μ+μ−, 2.5 < |y | < 4
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J/ψ at midrapidity

Pb

Pb

Very intense flux: impact-parameter-dependent 
possibility of mul3-photon exchanges Secondary photons may induce EMD of the nucleus, producing neutrons at zero degrees

 Guzey, Strikman, Zhalov, EPJ C74 (2014) 2942

The neutrons are then measured with the ZDCs
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EMD and ZDC
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ALICE, JHEP 06 (2020) 035
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It is possible to cleanly separate the different event topologies, using the ZDC

0n0n

0nXn

XnXn

10



4− 3− 2− 1− 0 1
y

0

1

2

3

4

5

6

7

8

 (
m

b
)

y
/d
σ

d

ALICE 0n0n
Impulse approximation
STARlight
EPS09 LO
LTA
GG-HS
b-BK-A

 = 5.02 TeVNNsPb −ALICE Pb

ALI−PUB−567131

4− 3− 2− 1− 0 1
y

0.0

0.5

1.0

1.5

2.0

2.5

 (
m

b
)

y
/d
σ

d

ALICE 0nXn+Xn0n
Impulse approximation
STARlight
EPS09 LO
LTA
GG-HS
b-BK-A

 = 5.02 TeVNNsPb −ALICE Pb

ALI−PUB−567135

4− 3− 2− 1− 0 1
y

0.0

0.2

0.4

0.6

0.8

1.0

1.2

 (
m

b
)

y
/d
σ

d

ALICE Xn0n
Impulse approximation
STARlight
EPS09 LO
LTA
GG-HS
b-BK-A

 = 5.02 TeVNNsPb −ALICE Pb

ALI−PUB−567139

4− 3− 2− 1− 0 1
y

0.0

0.2

0.4

0.6

0.8

1.0

 (
m

b
)

y
/d
σ

d

ALICE XnXn
Impulse approximation
STARlight
EPS09 LO
LTA
GG-HS
b-BK-A

 = 5.02 TeVNNsPb −ALICE Pb

ALI−PUB−567143

Run 2: rapidity dependence of J/ψ coherent produc3on in EMD classes

11

0n0n 0nXn+Xn0n

Xn0n XnXn

ALICE, JHEP 10 (2023) 119

Guillermo Contreras, CTU in Prague 

https://inspirehep.net/literature/2666011


4− 3− 2− 1− 0 1
y

0

1

2

3

4

5

6

7

8

 (
m

b
)

y
/d
σ

d

ALICE 0n0n
Impulse approximation
STARlight
EPS09 LO
LTA
GG-HS
b-BK-A

 = 5.02 TeVNNsPb −ALICE Pb

ALI−PUB−567131

4− 3− 2− 1− 0 1
y

0.0

0.5

1.0

1.5

2.0

2.5

 (
m

b
)

y
/d
σ

d

ALICE 0nXn+Xn0n
Impulse approximation
STARlight
EPS09 LO
LTA
GG-HS
b-BK-A

 = 5.02 TeVNNsPb −ALICE Pb

ALI−PUB−567135

4− 3− 2− 1− 0 1
y

0.0

0.2

0.4

0.6

0.8

1.0

1.2

 (
m

b
)

y
/d
σ

d

ALICE Xn0n
Impulse approximation
STARlight
EPS09 LO
LTA
GG-HS
b-BK-A

 = 5.02 TeVNNsPb −ALICE Pb

ALI−PUB−567139

4− 3− 2− 1− 0 1
y

0.0

0.2

0.4

0.6

0.8

1.0

 (
m

b
)

y
/d
σ

d

ALICE XnXn
Impulse approximation
STARlight
EPS09 LO
LTA
GG-HS
b-BK-A

 = 5.02 TeVNNsPb −ALICE Pb

ALI−PUB−567143

Run 2: rapidity dependence of J/ψ coherent produc3on in EMD classes

11

0n0n 0nXn+Xn0n
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ALICE, JHEP 10 (2023) 119

Several UPC measurements for each rapidity range → We can extract the photonuclear cross sec3ons!
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Flux at different rapidi3es
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bkwd rap mid rap fwd rap

nOOn: Broz et al., CPC 235 (2020) 107181

Flux evolu3on

x =
m

s
e−y =

m2

W2

At bkgd and mid rapidity, most of the flux in the 0n0n channel, at fwd rapidi3es (small x), all fluxes are small and similar
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→ strong QCD dynamic effects
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Outlook

The LHC Run 3 is ongoing and ALICE is recording new UPC data

Larger data samples, w.r.t. LHC Run 1+2, are expected
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Summary

ALICE has measured the coherent produc3on of J/ψ across  
3 orders of magnitude in Bjorken-x

The new ALICE data is consistent with ALICE measurements from 
Run 1 and with CMS results from Run 2

Satura3on and shadowing based models describe equally well 
the behaviour of data at high energies

Outlook

The LHC Run 3 is ongoing and ALICE is recording new UPC data

Larger data samples, w.r.t. LHC Run 1+2, are expected
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