Small-*x* Quark and Gluon Helicity Contributions to the Proton Spin Puzzle

Yossathorn (Josh) Tawabutr

University of Jyväskylä, Department of Physics, Centre of Excellence in Quark Matter

Centre of Excellence in Quark Matter In collaboration with:

Y. Kovchegov, F. Cougoulic, A. Tarasov D. Pitonyak, M. Sievert, N. Baldonado D. Adamiak, W. Melnitchouk, N. Sato

Based on: 2204.11898, 2306.01651, 2308.07461, and earlier publications

Proton Spin

- In the past, proton spin was thought to be the sum of constituent quarks spins.
- Now, we believe it to be the sum of spins of valence quarks, sea quarks and gluons, together with their orbital angular momenta (OAM).

Helicity PDF

$$\longrightarrow - \longleftarrow$$

- Helicity-dependent generalization of PDFs
- For each parton *f*,

$$\Delta f(x, Q^2) = f(x, Q^2, +) - f(x, Q^2, -)$$

• For quarks, we often consider the "flavor singlet" quark hPDF:

$$\Delta \Sigma(x,Q^2) = \sum_{q=u,d,s} \left[\Delta q(x,Q^2) + \Delta \bar{q}(x,Q^2) \right]$$

and the "flavor non-singlet" quark hPDF: $\Delta q^{-}(x,Q^{2}) = \Delta q(x,Q^{2}) - \Delta \bar{q}(x,Q^{2})$

• Gluon hPDF: $\Delta G(x, Q^2)$

Proton Helicity Sum Rule

• Jaffe-Manohar sum rule:
$$\frac{1}{2} = S_q + S_G + L_q + L_G$$

where the helicity of quarks (S_{a}) and gluons (S_{G}) are

$$S_q(Q^2) = \frac{1}{2} \int_0^1 dx \, \Delta \Sigma(x, Q^2) \quad \text{and} \quad S_G(Q^2) = \int_0^1 dx \, \Delta G(x, Q^2)$$

• In the late 1980's, EMC measurement implied that $S_q \approx 0.05$, much lower than what would have been (1/2) had all the proton spin been carried by the constituent quarks.

Current Knowledge of Proton Helicity

More recently, the proton spin carried by quarks and • gluon are estimated to be

gluon are estimated to be

$$S_q(Q^2 = 10 \text{ GeV}^2) \approx \frac{1}{2} \int_{0.001}^1 dx \,\Delta\Sigma(x, 10 \text{ GeV}^2) \in [0.15, 0.20]$$

$$S_G(Q^2 = 10 \text{ GeV}^2) \approx \int_{0.05}^1 dx \,\Delta G(x, 10 \text{ GeV}^2) \in [0.13, 0.26]$$

- They do not add to 1/2. The missing spin can come from:
 - Orbital angular momenta, L_{q} and L_{G} . Ο
 - Small-*x* region of $\Delta \Sigma$ and ΔG . Scattering experiments can only access Ο finitely small x. The limit will improve with EIC.

 $\frac{1}{2} = S_q + S_G + L_q + L_G$

 $S_q(Q^2) = \frac{1}{2} \int dx \, \Delta \Sigma(x, Q^2)$

DIS at Small x: The Dipole Picture

• Unpolarized PDF and structure functions, $F_1(x, Q^2)$ and $F_2(x, Q^2)$, relate to the **s-matrix** of dipole-target scattering:

$$S(\underline{x}_{1}, \underline{x}_{0}, s) \equiv S_{10}(s) = \frac{1}{N_{c}} \left\langle \operatorname{tr} \left[V_{\underline{1}} V_{\underline{0}}^{\dagger} \right] \right\rangle (s) \text{ over target's state, including spin}$$

$$\underset{\gamma^{*}}{\underset{\gamma^{*}}{}} \text{ where } V_{\underline{1}}[x_{f}^{-}, x_{i}^{-}] \equiv V_{\underline{x}_{1}}[x_{f}^{-}, x_{i}^{-}] = \mathcal{P} \exp \left[ig \int_{x_{i}^{-}}^{x_{f}^{-}} dx^{-} A^{+}(0^{+}, x^{-}, \underline{x}_{1}) \right]$$

$$\underset{V_{\underline{1}}}{\underset{(\text{"Shockwave"})}{}} U_{\underline{1}} \equiv V_{\underline{1}} \left[\infty, -\infty \right]$$

$$\underset{\text{Lightcone (unpolarized) Wilson line}{}$$

6

Unpolarized Dipole Amplitude

- Parton unpolarized PDF, $\Sigma(x, Q^2)$ and $G(x, Q^2)$, relate to unpolarized dipole amplitude, $S_{10}(s) = \frac{1}{N_c} \left\langle \operatorname{tr} \left[V_{\underline{1}} V_{\underline{0}}^{\dagger} \right] \right\rangle(s)$, which obeys BFKL/BK/JIMWLK evolution.
- Quark going through the shockwave at \underline{x}_1 : unpolarized Wilson line,
- Multiple parton exchanges at **eikonal** level (leading order in *x*).

Unpolarized Wilson Line

$$V_{\underline{x}_{1}}[x_{f}^{-}, x_{i}^{-}] = \mathcal{P} \exp \left[ig \int_{x_{i}^{-}}^{x_{f}^{-}} dx^{-} A^{+}(0^{+}, x^{-}, \underline{x}_{1}) \right]$$

Yossathorn (Josh) Tawabutr

Small-x Quark and Gluon Helicity

DIS 2024

Unpolarized Wilson Line

$$V_{\underline{x}_{1}}[x_{f}^{-}, x_{i}^{-}] = \mathcal{P} \exp \left[ig \int_{x_{i}^{-}}^{x_{f}^{-}} dx^{-} A^{+}(0^{+}, x^{-}, \underline{x}_{1}) \right]$$

• Eikonal vertex insertion:

$$V_{\underline{x}} = ig \int_{-\infty}^{\infty} dx^{-} V_{\underline{x}}[\infty, x^{-}] A^{+}(x^{-}, \underline{x}) V_{\underline{x}}[x^{-}, -\infty]$$

9

Polarized Wilson Line

- Insertion of leading helicity-dependent vertex, which is
 - Sub-eikonal, i.e. (1/s)-suppressed
 - Not necessarily diagonal in transverse position
 - \circ Denoted $V^{
 m pol}_{{\underline x},y}$

$$V_{\underline{x}_{1}}[x_{f}^{-}, x_{i}^{-}] = \mathcal{P} \exp \left[ig \int_{x_{i}^{-}}^{x_{f}^{-}} dx^{-} A^{+}(0^{+}, x^{-}, \underline{x}_{1}) \right]$$

[Cougoulic, Kovchegov (YK), Tarasov, Tawabutr (JT), 2204.11898 & predecessors]

Polarized Wilson Line

[Cougoulic, Kovchegov (YK), Tarasov, Tawabutr (JT), 2204.11898 & predecessors]

 Helicity-dependent quark line going through the shockwave corresponds to multiple eikonal parton exchanges, except for <u>one</u> helicity-dependent exchange, which is **sub-eikonal** (suppressed by an extra factor of x).

[Cougoulic, YK, Tarasov, JT, 2204.11898 & predecessors]

Polarized Wilson Line

Polarized

Type 2

 $\delta_{\scriptscriptstyle\sigma,\sigma'}$

 $\sim {\Bar D} \cdot {\Bar D}$

N/A

 $G_2(x_{10}, zs)$

 $G_2(x_{10}, zs)$

[Cougoulic, YK, Tarasov, JT, 2204.11898 & predecessors]

Polarizad Wilson Lina			
	Polarized Wilson line	Type 1	Type 2
$\frac{V_{\underline{x}}[x^-, -\infty]}{} \underbrace{\sigma}_{\underline{x}^-} (\text{Sub-eikonal} \underbrace{\sigma' V_{\underline{y}}[x^-, -\infty]}_{x^-} \underbrace{\sigma' V_{\underline{y}}[x^-, -\infty]}_{\underline{y}^-}$	Helicity structure	$\sigma\delta_{\sigma,\sigma'}$	$\delta_{_{\sigma,\sigma'}}$
vertex \otimes 00000000000000000000000000000000000	Gluon exchange	$\sim F^{12} \delta^2(\underline{x} - \underline{y})$	$\sim \underline{\overleftarrow{D}} \cdot \underline{\overrightarrow{D}}$
$Q(x_{10}, zs) \sim \left\langle \operatorname{tr} \left[V_{\underline{0}} V_{\underline{1}}^{\operatorname{pol}[1]\dagger} \right] + \operatorname{tr} \left[V_{\underline{1}}^{\operatorname{pol}[1]} V_{\underline{0}}^{\dagger} \right] \right\rangle$	Quark exchange	$\sim \psi \left(\gamma^+ \gamma_5 \right) \bar{\psi} \delta^2 (\underline{x} - \underline{y})$	N/A
$\widetilde{G}(x_{10}, zs) \sim \left\langle \operatorname{Tr} \left[U_{\underline{0}} U_{\underline{1}}^{\operatorname{pol}[1]\dagger} \right] + \operatorname{Tr} \left[U_{\underline{1}}^{\operatorname{pol}[1]} U_{\underline{0}}^{\dagger} \right] \right\rangle$	Adjoint dipole	$\widetilde{G}(x_{10},zs)$	$G_2(x_{10}, zs)$
$G_2(x_{10}, zs) \sim \left\langle \operatorname{tr} \left[V_{\underline{0}} V_{\underline{1}}^{\operatorname{pol}[2]\dagger} \right] + \operatorname{tr} \left[V_{\underline{1}}^{\operatorname{pol}[2]} V_{\underline{0}}^{\dagger} \right] \right\rangle$	Fundamental dipole	$Q(x_{10},zs)$	$G_2(x_{10}, zs)$
Brackets now include $\frac{1}{2}\sum S$ of proton helicity	L	11	
Yossathorn (Josh) Tawabutr Small-x	Quark and Gluon Hel	icity	DIS 2024 ¹³

[Cougoulic, YK, Tarasov, JT, 2204.11898 & predecessors]

Dolorizod Wilson Lino			
	Polarized Wilson line	Type 1	Type 2
$\frac{V_{\underline{x}}[x^-, -\infty]}{} \underbrace{\mathcal{O}}_{\mathbf{x}^-} \underbrace{\mathcal{O}}_{x$	Helicity structure	$\sigma\delta_{_{\sigma,\sigma'}}$	$\delta_{_{\sigma,\sigma'}}$
	Gluon exchange	$\sim F^{12} \delta^2(\underline{x} - \underline{y})$	$\sim \underline{\overleftarrow{D}} \cdot \underline{\overrightarrow{D}}$
$\Delta\Sigma(x,Q^2) = -\frac{N_c N_f}{2\pi^3} \int_{\Lambda^2/s}^{1} \frac{dz}{z} \int_{\frac{1}{z_c}}^{\min\left\{\frac{1}{zQ^2},\frac{1}{\Lambda^2}\right\}} \frac{dx_{10}^2}{x_{10}^2} \left[Q(x_{10}^2,zs) + 2G_2(x_{10}^2,zs)\right]$	Quark exchange	$\sim \psi \left(\gamma^+ \gamma_5 \right) \bar{\psi} \delta^2 (\underline{x} - \underline{y})$	N/A
$\Delta G(x,Q^2) = \frac{2N_c}{\alpha_s \pi^2} \left[\left(1 + x_{10}^2 \frac{\partial}{\partial x_{10}^2} \right) G_2 \left(x_{10}^2, zs = \frac{Q^2}{x} \right) \right]_{x_{10}^2 = \frac{1}{Q^2}}$	Adjoint dipole	$\widetilde{G}(x_{10},zs)$	$G_2(x_{10},zs)$
$g_1(x,Q^2) = -\sum_f \frac{N_c Z_f^2}{4\pi^3} \int_{z_1}^1 \frac{dz}{z} \int_{z_1}^{\min\left\{\frac{1}{zQ^2},\frac{1}{\Lambda^2}\right\}} \frac{dx_{10}^2}{x_{10}^2} \left[Q(x_{10}^2,zs) + 2G_2(x_{10}^2,zs)\right]$	Fundamental dipole	$Q(x_{10},zs)$	$G_2(x_{10},zs)$
$\Delta\Sigma(x,Q^2) = -\frac{N_c N_f}{2\pi^3} \int_{\Lambda^2/s}^{1} \frac{dz}{z} \int_{\frac{1}{zs}}^{\min\left\{\frac{1}{zQ^2},\frac{1}{\Lambda^2}\right\}} \frac{dx_{10}^2}{x_{10}^2} \left[Q(x_{10}^2,zs) + 2G_2(x_{10}^2,zs)\right]$ $\Delta G(x,Q^2) = \frac{2N_c}{\alpha_s\pi^2} \left[\left(1 + x_{10}^2 \frac{\partial}{\partial x_{10}^2}\right) G_2\left(x_{10}^2,zs = \frac{Q^2}{x}\right)\right]_{x_{10}^2 = \frac{1}{Q^2}}$ $g_1(x,Q^2) = -\sum_f \frac{N_c Z_f^2}{4\pi^3} \int_{\Lambda^2/s}^{1} \frac{dz}{z} \int_{\frac{1}{zs}}^{\min\left\{\frac{1}{zQ^2},\frac{1}{\Lambda^2}\right\}} \frac{dx_{10}^2}{x_{10}^2} \left[Q(x_{10}^2,zs) + 2G_2(x_{10}^2,zs)\right]$	Gluon exchange Quark exchange Adjoint dipole Fundamental dipole	$\sim F^{12} \delta^2(\underline{x} - \underline{y})$ $\sim \psi \left(\gamma^+ \gamma_5 \right) \overline{\psi} \delta^2(\underline{x} - \underline{y})$ $\widetilde{G}(x_{10}, zs)$ $Q(x_{10}, zs)$	$\sim \underline{ar{D}} \cdot \underline{ar{D}}$ N/A $G_2(x_{10}, z_3)$

Yossathorn (Josh) Tawabutr

Small-x Quark and Gluon Helicity

Small-x Asymptotics with Quark Exchanges (Large $N_c \& N_f$)

- At small x, gluons dominate $\rightarrow N_c \gg 1$
- Still important to include quark exchanges (~ N_f/N_c) for helicity evolution
- Flavor non-singlet hPDF:

$$\Delta q^{-}(x,Q^{2}) = \Delta q(x,Q^{2}) - \Delta \bar{q}(x,Q^{2}) \sim \left(\frac{1}{x}\right)^{\sqrt{\alpha_{s}N_{c}/\pi}}$$
[YK, Pitonyak, Sievert, 1610.06197]

• Flavor singlet hPDF:

$$\Delta\Sigma(x,Q^2) = \sum_{q=u,d,s} \left[\Delta q(x,Q^2) + \Delta \bar{q}(x,Q^2) \right]$$
$$\sim \Delta G(x,Q^2) \sim g_1(x,Q^2) \sim \left(\frac{1}{x}\right)^{3.43\sqrt{\alpha_s N_c/2\pi}}$$

[Adamiak, YK, JT, 2306.01651]

Yossathorn (Josh) Tawabutr

Small-x Quark and Gluon Helicity

DIS 2024 15

Small-x Asymptotics with Quark Exchanges (Large $N_c \& N_f$)

- At small x, gluons dominate $\rightarrow N_c \gg 1$
- Still important to include quark exchanges (~ N_f/N_c) for helicity evolution
- Flavor non-singlet hPDF:

$$\Delta q^{-}(x,Q^{2}) = \Delta q(x,Q^{2}) - \Delta \bar{q}(x,Q^{2}) \sim \left(\frac{1}{x}\right) \sqrt{\frac{\alpha_{s}N_{c}/\pi}{1610.06197}}$$
[YK, Pitonyak, Sievert, 1610.06197]
Flavor singlet hPDF:

Smaller than 1

$$\begin{split} \Delta \Sigma(x,Q^2) &= \sum_{q=u,d,s} \left[\Delta q(x,Q^2) + \Delta \bar{q}(x,Q^2) \right] \\ &\sim \Delta G(x,Q^2) \sim g_1(x,Q^2) \sim \left(\frac{1}{x}\right)^{3.43\sqrt{\alpha_s N_c/2\pi}} \end{split}$$

[Adamiak, YK, JT, 2306.01651]

Small-x Quark and Gluon Helicity

Small-x Asymptotics with Quark Exchanges (Large $N_c \& N_f$)

• At small x, gluons dominate $\rightarrow N_c \gg 1$

q=u,d,s

• Still important to include quark exchanges (~ N_f/N_c) for helicity evolution

 $\sim \Delta G(x,Q^2) \sim g_1(x,Q^2) \sim \left(\frac{1}{x}\right)^{3.43\sqrt{\alpha_s N_c/2\pi}}$

• Flavor non-singlet hPDF:

$$\Delta q^{-}(x,Q^{2}) = \Delta q(x,Q^{2}) - \Delta \bar{q}(x,Q^{2}) \sim \left(\frac{1}{x}\right)^{\sqrt{\alpha_{s}N_{c}/\pi}}$$
[YK, Pitonyak, Sievert, 1610.06197]
Flavor singlet hPDF (with N_{f} = 3):
$$\Delta \Sigma(x,Q^{2}) = \sum_{r} \left[\Delta q(x,Q^{2}) + \Delta \bar{q}(x,Q^{2})\right]$$
Smaller than 1
Exceed 1 for $\alpha_{s} \ge 0.18$

[Adamiak, YK, JT, 2306.01651]

Small-x Quark and Gluon Helicity

Corrections to the DLA Evolution

- So far, helicity evolution resums $\alpha_s \ln^2(1/x)$.
- Potentially significant single-log corrections, resumming $\alpha_s \ln(1/x)$.
 - Convoluting with unpolarized dipoles, which obey BK evolution
 - Likely to include saturation mechanism
 - See [YK, Tarasov, JT, 2104.11765] and upcoming work

Corrections to the DLA Evolution

- So far, helicity evolution resums $\alpha_s \ln^2(1/x)$.
- Potentially significant single-log corrections, resumming $\alpha_s \ln(1/x)$.
 - Convoluting with unpolarized dipoles, which obey BK evolution
 - Likely to include saturation mechanism
 - See [YK, Tarasov, JT, 2104.11765] and upcoming work
- Recently, a **running coupling correction** (daughter dipole prescription) is employed to the DLA evolution in a global fit with polarized DIS & SIDIS data.
- KPS-CTT evolution (with rc) starts at $x_0 = 0.1$.
- At larger *x*, employ generalized Born-level initial condition:

[Adamiak et al, 2308.07461]

Dipole ~ a $\ln(rapidity) + b \ln(dipole size) + c$

Global Fit

- Polarized DIS and SIDIS data $(A_1, A_{\parallel}, A_{\parallel}^h)$ from SLAC, EMC, SMC, COMPASS and HERMES at 0.005 $\leq x \leq 0.1$ and 1.69 GeV² $\leq Q^2 \leq 10.4$ GeV².
 - Include proton, deuteron and helium-3 targets
 - For SIDIS, include π^{\pm} , K^{\pm} and unidentified charged hadron productions
- In total, N_{pts} = 226 data points
- Overall, $\chi^2 / N_{\text{pts}} = 1.03$

Yossathorn (Josh) Tawabutr

Small-x Quark and Gluon Helicity

Global Fit

[Adamiak et al, 2308.07461]

Yossathorn (Josh) Tawabutr

Small-x Quark and Gluon Helicity

DIS 2024 21

Future EIC Impact

• Significant reduction of uncertainty at small *x* with future EIC data.

Yossathorn (Josh) Tawabutr

Small-x Quark and Gluon Helicity

DIS 2024 22

Global Fit: Next Step

- To allow the data to fix the total helicity, we need a more deterministic IC.
- Model proton target at moderate *x* with 3 valence quarks, c.f. [Dumitru et al 2010.11245, 2303.16339].
- Stay tuned

Conclusion

- Already at DLA, KPS-CTT evolution provides a promising small-*x* description of parton helicity, with potential improvement from future EIC results.
- Future work:
 - More deterministic initial condition using a valence-quark wave function
 - \circ Improved global fit that includes *pp* particle production data
 - Complete single-logarithmic corrections, which will incorporate saturation
- The framework can be modified to calculate OAM's [YK, Manley, 1901.07453, 2310.18404] and other TMD's [YK, Santiago, 2108.03667, 2209.03538, 2310.02231].
- The framework has been generalized to helicity-JIMWLK evolution and helicity-dependent extension to MV model [Cougoulic, YK, 1910.04268, 2005.14688].

Global Fit: hPDF Results

Global Fit: Data Points

Data set (A_1)	Target	$N_{ m pts}$	$\chi^2/N_{ m pts}$
SLAC (E142) [141]	³ He	1	0.60
EMC [146]	p	5	0.20
SMC [147, 149]	p	6	1.29
	p	6	0.53
	d	6	0.67
	d	6	2.26
COMPASS [150]	p	5	1.02
COMPASS [151]	p	17	0.74
COMPASS [152]	d	5	0.88
HERMES [153]	n	2	0.73
Total		59	0.91
	()		
Data set (A_{\parallel})	Target	$N_{ m pts}$	$\chi^2/N_{ m pts}$
SLAC(E155) [144]	p	16	1.28
	d	16	1.62
SLAC (E143) [143]	p	9	0.56
	d	9	0.92
SLAC (E154) [142]	³ He	5	1.09
HERMES [154]	p	4	1.54
	d	4	0.98
Total		63	1.19

Dataset (A_1^h)	Target	Tagged Hadron	$N_{ m pts}$	$\chi^2/N_{ m pts}$
SMC [148]	p	h^+	7	1.03
	p	h^-	7	1.45
	d	h^+	7	0.82
	d	h^-	7	1.49
HERMES [158]	p	π^+	2	2.39
	p	π^{-}	2	0.01
	p	h^+	2	0.79
	p	h^-	2	0.05
	d	π^+	2	0.47
	d	π^{-}	2	1.40
	d	h^+	2	2.84
	d	h^-	2	1.22
	d	K^+	2	1.81
	d	K^{-}	2	0.27
	d	$K^+ + K^-$	2	0.97
HERMES [159]	$^{3}\mathrm{He}$	h^+	2	0.49
	³ He	h^-	2	0.29
COMPASS [156]	p	π^+	5	1.88
80748 39920	p	π^{-}	5	1.10
	p	K^+	5	0.42
	p	K^{-}	5	0.31
COMPASS [157]	d	π^+	5	0.50
	d	π^{-}	5	0.78
	d	h^+	5	0.90
	d	h^{-}	5	0.86
	d	K^+	5	1.50
	d	K^{-}	5	0.78
Total			104	1.01

Yossathorn (Josh) Tawabutr

Small-x Quark and Gluon Helicity

26