

Probing gluon saturation and nuclear structure in photon-nucleus collisions

Heikki Mäntysaari with F. Salazar, B. Schenke, C. Shen, W. Zhao arXiv:2312.04194 & arXiv:2310.15300 & in preparation

> University of Jyväskylä Centre of Excellence in Quark Matter Finland

DIS2024, April 10, 2024

Heikki Mäntysaari (JYU)

Introduction: vector mesons in UPCs, $A + A \rightarrow J/\psi + A + A$

D. Grund, UPC2023 Two-fold ambiguity:

$$x_A = \frac{M_V}{\sqrt{s}} e^{\pm y}$$

 ∇^{S} In principle UPCs provide access to very small-x nuclear $\sigma \sim n_{\gamma}(+y)\sigma(+y)+n_{\gamma}(-y)\sigma(-y)$ structure, but high- x_{A} component dominates at large |y|

ALICE, 2101.04577

Recent development: extract individual $\gamma + A$ contributions

$$\begin{aligned} \frac{\mathrm{d}\sigma_{AA}^{\{b_1\}}}{\mathrm{d}y} &= n_{\gamma}(y, \{b\}_1)\sigma_{\gamma A}(y) \\ &+ n_{\gamma}(-y, \{b\}_1)\sigma_{\gamma A}(-y) \end{aligned}$$
$$\begin{aligned} \frac{\mathrm{d}\sigma_{AA}^{\{b_2\}}}{\mathrm{d}y} &= n_{\gamma}(y, \{b\}_2)\sigma_{\gamma A}(y) \\ &+ n_{\gamma}(-y, \{b\}_2)\sigma_{\gamma A}(-y) \end{aligned}$$

Forward neutron classes \Rightarrow impact parmeter range $\{b_i\} \Rightarrow$ different flux n_{γ} \Rightarrow solve for $\sigma_{\gamma A}$ Method: Guzey et al, 1312.6486 See talk by Contreras (Tue) for details

Access VM production at very small xConfront CGC calculations with this data!

ALICE, 2305.19060

 \Rightarrow Probe average interaction \Rightarrow average geometry

Variance \Rightarrow access to event-by-event fluctuations in the target structure

Heikki Mäntysaari (JYU)

Vector meson production at high energy

Lowest order in perturbation theory: $\mathcal{A}_{\Omega} \sim i \int d^2 \mathbf{b}_{\perp} e^{-i\mathbf{b}_{\perp}\cdot\mathbf{\Delta}} \Psi^* \otimes \Psi_{\mathrm{J/\psi}} \otimes N_{\Omega}$

- $\gamma^* \rightarrow q\bar{q}$: photon wave function Ψ (QED)
- $q\bar{q}$ -target interaction: dipole amplitude N_{Ω}
- $\ \, {\bf 0} \ \, q\bar{q} \rightarrow {\rm J}/\psi : \ \, {\rm J}/\psi \ \, {\rm wave \ function} \ \, \Psi_{{\rm J}/\psi}$

H.M, Salazar, Schenke, 2207.03712

 No net color charge transfer ("diffractive"), Ω =target configuration

 Heikki Mäntysaari (JYU)
 Exclusive VM production at small-x
 April 10, 2024

Dipole: MV model + JIMWLK evolution constrained by HERA data (backup)

Initial condition

Large e-b-e fluctuations in proton geometry.

H.M, Schenke, 1603.04349 + subsequent papers

Saturation in coherent production: $\gamma + Pb \rightarrow J/\psi + Pb$

- $\bullet\,$ Challenging to describe the W dependence of $\sigma^{\gamma\rm Pb}$
 - \blacktriangleright LHC data well reproduced at moderate $W \lesssim 100~{\rm GeV}$
 - Energy dependence well reproduced at higher W, but overestimate overall cross section
- Nuclear suppression factor

$$S_{\rm coh} = \sqrt{\frac{\sigma^{\gamma \rm Pb}}{\sigma_{\rm IA}}}, \quad \sigma_{\rm IA} = \left. \frac{\mathrm{d}\sigma^{\gamma p}}{\mathrm{d}t} \right|_{t=0} \int \mathrm{d}t \, |F(t)|^2$$

- General trend captured...
- \blacktriangleright . . . but data would prefer a stronger W dependence

No free parameters when moving $p\to A:$ genuine prediction Ongoing work: include $\gamma+{\rm Pb}$ to fits determining JIMWLK IC

Heikki Mäntysaari (JYU)

7/14

Saturation in incoherent production: $\gamma + Pb \rightarrow J/\psi + Pb^*$

- Proton e-b-e fluctuating geometry tuned to HERA data
- Smoother proton at small- $x \Rightarrow$ reduced fluctuations, incoherent cross section suppressed
- Lower-energy measurement from STAR for the suppression factor

$$S_{\text{incoh}} = \frac{\sigma^{\gamma + \text{Pb} \to \text{J}/\psi + \text{Pb}^*}}{A(\sigma^{\gamma + p \to \text{J}/\psi + p} + \sigma^{\gamma + p \to \text{J}/\psi + p^*})}$$

- $\bullet\,$ LHC data can probe $x_{\mathbb{P}}$ dependent geometry fluctuations
- ALICE t spectra: compatible with no modification to nucleon substructure in nuclei at $x_{\mathbb{P}}\sim 10^{-3}$

H.M, Salazar, Schenke, 2312.04194

Interference patterns (see previous talk for a proper introduction)

- γ linearly polarized $\uparrow\uparrow$ $\mathbf{B}_{\perp}\text{, polarization transferred to }\rho$
- $\bullet\,$ Effect on decay products, but not visible as ${\bf B}_{\perp}$ random
- But two different amplitudes & interference:

Correlations in daughters $\rho \rightarrow \pi^+ + \pi^-$ (or ${\rm J}/\psi \rightarrow e^+ + e^-)$

$$\frac{\mathrm{d}\sigma^{\rho \to \pi^+ \pi^-}}{\mathrm{d}^2 \mathbf{P}_{\perp} \mathrm{d}^2 \mathbf{q}_{\perp} \mathrm{d}y_1 \mathrm{d}y_2} = \text{coherent} + \text{incoherent} = \frac{1}{2(2\pi)^3} \frac{f^2}{(M_{\pi\pi}^2 - M_V^2)^2 + M_V^2 \Gamma^2} \left\{ \left\langle \int \mathrm{d}^2 \mathbf{B}_{\perp} \mathcal{M}^i(\mathbf{q}_{\perp}, \mathbf{B}_{\perp}) \mathcal{M}^{\dagger, j}(\mathbf{q}_{\perp}, \mathbf{B}_{\perp}) \mathbf{P}_{\perp}^i \mathbf{P}_{\perp}^j \Theta(|\mathbf{B}_{\perp}| - \underbrace{B_{\min}}_{\text{determine e-b-e}}) \right\rangle_{\Omega} \right\}$$

$$\mathcal{M}^{i}(y_{1}, y_{2}, \mathbf{q}_{\perp}, \mathbf{B}_{\perp}) = \int \mathrm{d}^{2}\mathbf{b}_{\perp} e^{-i\mathbf{q}_{\perp}\cdot\mathbf{b}_{\perp}} \left[\underbrace{\widetilde{\mathcal{A}}_{1}(x_{1}, \mathbf{b}_{\perp})}_{\gamma + A_{1} \text{ scattering}} \underbrace{\widetilde{\mathcal{F}}_{2}^{i}(x_{2}, \mathbf{b}_{\perp} - \mathbf{B}_{\perp})}_{\gamma \text{ field of } A_{2}} + \widetilde{\mathcal{A}}_{2}(x_{2}, \mathbf{b}_{\perp} - \mathbf{B}_{\perp}) \widetilde{\mathcal{F}}_{1}^{i}(x_{1}, \mathbf{b}_{\perp})\right]$$

H.M, Salazar, Schenke, Shen, Zhao, 2310.15300

Heikki Mäntysaari (JYU)

9/14

Interference patterns: $A + A \rightarrow A^{(*)} + A^{(*)} + \rho$

- Spectra well described including linearly polarized photons, interference and photon k_T
- Angular modulation sensitive to deformations
 - Dominant reason: different B_{\min} distributions

Caveat: ρ mass not large enough to fully justify perturbative calculation, but modulation insensitive to $r\gtrsim 1$ fm dipoles at $|{\bf q}_\perp|<0.1~{\rm GeV}$

H.M, Salazar, Schenke, Shen, Zhao, 2310.15300

Interference in different neutron classes: $Pb + Pb \rightarrow Pb^{(*)} + Pb^{(*)} + \rho$

- More neutrons emitted when impact parameter is smaller
- Interference decreases with increasing impact parmeter

H.M, Salazar, Schenke, Shen, Zhao, 2310.15300

Polarized deuteron

- Unique at the EIC: polarized beams
 - \Rightarrow probe spatial distribution of small-x gluons in a polarized d
- $\Phi :$ Angle between ${\rm J}/\psi$ momentum and d polarization
- Effective deuteron size seen depends on the angle

H.M, Salazar, Schenke, Shen, Zhao, in preparation

Conclusions

- $\gamma + Pb$ data from UPCs: probe saturation in the TeV range
- \bullet Strong suppression from the LHC qualitatively understood, but challenging to get as large suppression at high W
 - Note: no free parameters when moving $p \rightarrow Pb$
- Future measurements for incoherent $\gamma + Pb \rightarrow J/\Psi + Pb^*$ allow for probing nucleon geometry fluctuations in nuclear environment
- Azimuthal correlations in UPCs sensitive also to deformed structure of nuclei
- EIC possibility: how are small-x gluons distributed in a polarized deuteron?

The 2nd workshop on the physics of Ultra Peripheral Collisions

Ultra Peripheral location for UPC physics

- Lapland, Finland, 9.-13.6.2025 (24h daylight!), TBC
- https://indico.cern.ch/event/1378275/

Local organizing committee chairs

• Ilkka Helenius and Heikki Mäntysaari

Travel

• International flight to Helsinki + domestic connection

Backups

Saturation effect on nuclear geometry: $A+A \rightarrow A+A+{\rm J}/\psi$

 $\gamma+Pb$ at the LHC: very high density, saturation can modify the nuclear geometry

UPC data from LHC: $x = 6 \cdot 10^{-4}$

- Coherent $\gamma + Pb \rightarrow J/\psi + Pb$
- No saturation: geometry = Woods-Saxon
 ⇒ not compatible with ALICE data
- Saturation: nucleus ≈ black disc at the center
 ⇒ modifieds nuclear geometry
 - $\Rightarrow J/\psi$ spectra compatible with ALICE measurements

H.M, Schenke, Salazar, PRD106 (2022), ALICE: PLB817 (2021)

Example with protons: proton shape from $\gamma + p \rightarrow J/\Psi + p$ Comparison to HERA data including color charge fluctuations ($x \sim 10^{-3}$)

Round proton: Fit proton size: (gluonic) radius $r_p \sim 0.6$ fm Note EM radius 0.88 fm

Average geometry (coherent) ✓ Fluctuations (incoherent) ≯

Constraining proton fluctuations: $\gamma + p \rightarrow J/\Psi + p$

HERA data can be described with large event-by-event fluctuations in the proton geometry

H.M, B. Schenke, PRL 117, 052301 (2016), PRD 94, 034042, H1: EPJC73, 2466

Dipole amplitude from the CGC

Color charge distribution at x = 0.01

- Event-by-event random color charge distribution ho^a
- McLerran-Venugopalan model $g^2 \langle \rho^a(\mathbf{x}_\perp) \rho^b(\mathbf{y}_\perp) \rangle \sim \delta^{ab} \delta(\mathbf{x}_\perp \mathbf{y}_\perp) g^4 \mu^2$
- $g^4\mu^2\sim Q_s^2({\bf b}_\perp)\sim T_p({\bf b}_\perp)$ from IPsat fit to HERA σ_r data

Small-x evolution

- Perturbative JIMWLK evolution (event-by-event)
- Infrared regulator to suppress gluon emission at long distance

Dipole-target amplitude

•
$$N(\mathbf{r}_{\perp} = \mathbf{x}_{\perp} - \mathbf{y}_{\perp}) = 1 - \frac{1}{N_c} \langle V^{\dagger}(\mathbf{x}_{\perp}) V(\mathbf{y}_{\perp}) \rangle$$

•
$$V(\mathbf{x}_{\perp}) = P \exp\left(-ig \int \mathrm{d}x^{-} \frac{\rho(\mathbf{x}_{\perp})}{\nabla^2 - m^2}\right)$$

STAR suppression factor data

H.M, Salazar, Schenke, 2312.04194:

Channel	STAR	CGC+shape fluct	CGC
$S_{ m coh}$	0.846 ± 0.063	0.89	0.90
$S_{ m incoh}$	$0.36\substack{+0.06\\-0.07}$	0.58	0.32

Table: Nuclear modification factors for J/ψ photoproduction in $\gamma + Au$ collisions. The CGC predictions are calculated at $x_{\mathbb{P}} = 0.01$ and the STAR measurements are performed at $x_{\mathbb{P}} = 0.015$. The coherent suppression factors S_{coh} obtained with and without nucleon substructure fluctuations are compatible with each other within the numerical accuracy.