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Introduction

Kinematics of DIS



Introduction

Balitsky & Kovchegov, 1999.



Introduction
The total cross section in QCD can not grow faster than the logarithm of 
energy squared: Froissart & Martin,1969  
 

Violation of Froissart theorem: Kovner & Wiedemann, 2002-2003 

Therefore, we have to introduce two dimensional scales in the CGC/
saturation approach: the saturation momentum, that is originated by the 
interactions of the BFKL Pomerons; and the new scale of the non-
perturbative source that provides the exponential decrease of 
the BFKL Pomeron at large b.



Introduction
The widely accepted phenomenological way to heal this problem is to 
introduce the non-perturbative dependence of

One can see that a numerical solution of the BK equation does not allow 
us to introduce these corrections since the BK equation does not have 
an explicit dependence on Qs. So from now on, use CLP or GL 
saturation scale..!!

Qs
2 (Y = 0,b)∝ exp(−mb)



Introduction
Another problem is the increase in energy behavior of the scattering 
amplitude due to the BFKL pomeron intercept and the energy behaviour 
of the new dimensional scale:  

Both show the increase in the leading order CGC approach, which 
cannot be reconciled with the available experimental data. So, the large 
NLO corrections appear as the only way out to reconcile this (as 
expected). 



CGC NLO dipole amplitude

This gives the explicit form of the BFKL kernel in the NLO, but as it has 
been alluded to we need to re-sum the NLO corrections 
to avoid instabilities. 
NLO.  

In the next-to-leading order (NLO), the non-linear equation has a more 
complicated form



CGC NLO dipole amplitude
We re-sum in the approximation, that was suggested by Ducloué, Iancu, 
Mueller, Soyez & Triantafyllopoulos (2019).  
It turns out, that in the framework of this re-summation we can neglect 
the last contribution, and therefore reduce the NLO BK equation to the 
LO BK equation, with the kernel which has to be found in the re-summed 
NLO. First, let’s put the formula of the eigenvalue at the NLO:

Fadin & Lipatov (1998). The procedure to re-sum high order corrections 
is suggested by Salam, Ciafaloni, Colferai & Stasto (1998-2003). The 
resulting spectrum of the BFKL equation in the NLO, can be found from 
the solution of the following equation 

https://arxiv.org/search/hep-ph?searchtype=author&query=Duclou%C3%A9,+B


CGC NLO dipole amplitude

Khoze, Martin, Ryskin & Stirling (2004) sugested an economic form of  
               , which coincides to within 7% with the full expression. The 
equation for ω takes the form

Where

χ1(ω , γ )

The re-summation procedure suggested is determined by the 
anomalous dimension γ in the vicinity of the eigenvalues at γ → 1.



CGC NLO dipole amplitude
Map of QCD:

3 regions for                      :                 (perturbative),                (vicinity of 
saturation region),               (saturation region).

τ <1 τ ~1
τ >1

τ = x01
2Qs

2



CGC NLO dipole amplitude

Using the general equation to determine the critical anomalous 
dimension and the energy behaviour of the saturation scale

in the vicinity of γ → 1 (perturbative region), we have

it was obtained:

so that 



CGC NLO dipole amplitude

We need                 to reproduce DIS data (                )
in the vicinity of γ → 0 (saturation region), we have

λ ≈ 0.2α S ≈ 0.1



CGC NLO dipole amplitude
Levin & Tuchin approximation (1999):



CGC NLO dipole amplitude
LO case:
Perturbative region described by 

Vicinity of saturation region described by 

Saturation region described by

where N̂(Y ,ξ;b) =
ξ

∫ d ′ξ N(Y , ′ξ ;b)



CGC NLO dipole amplitude

with                 . But such equation doesn’t have a solution. But then 
Levin (2013) suggested write this as

Defining                                          , after some algebra you will getN̂ =
ξ

∫ d ′ξ (1− e−φ (Y , ′ξ ) )

And found some analytical expression with a very good accuracy (2.5%)

κ = 0.65with

z = ξs + ξ



CGC NLO dipole amplitude
NLO case derived by Contreras, Levin, Meneses & Sanhueza (2020):
Perturbative region described by 

Vicinity of saturation region described by 

Saturation region described by



CGC NLO dipole amplitude

which for            gives

Defining                                          , after some algebra you will getN̂ =
ξ

∫ d ′ξ (1− e−Ω(Y , ′ξ ) )

so then analytical expression for NLO BK equation in the saturation 
region is given by

a = 0.65with                  

Ω0 ≪1



Inclusive Processes

Where

with

Observables:



Exclusive processes

Where

Observables:



Exclusive processes
For E = γ (DVCS), we have for the overlap wave function

while for E = V (DVMP), we have for the overlap wave function

The parameters         ,      and mf are from Table 2 of Kowalski, Motyka & 
Watt (2006).

NT ,L R



NLO in the dipole picture
It’s good to mention, that at next-to-leading order accuracy, it is 
necessary to incorporate loop corrections to the photon and vector 
meson wave functions, and to account for the           Fock state:  
3=3 
q 
¯ 
q 
g 
⟩ 
∣qˉ qg⟩ Fock state.state that can interact with the target.See Phys. Rev. D 85, 034039 (2012) and Phys. Rev. D 105, no.11, 114038 (2022) 

| qqg〉

Beuf (2011). And

Mäntysaari & Penttala (2022). However, this time our analysis does not 
focus on these corrections. Instead, we examine the next-to-leading 
order (NLO) corrections of the dipole-target scattering amplitude.



Numerical results and discussion
■ We determine the four free parameters of our model 

through a     minimization fitting process with experimental 
data from      (reduced inclusive DIS cross-section)    
measurements by the H1 and ZEUS collaborations (JHEP 
01, 109 (2010)), giving 

■ In our analysis, we conducted fits with varying light quark 
masses. Initially, we used a fixed value of mu,d,s = 0.14 
GeV and then explored a wider range from 10-1 to 10-4 
GeV, resulting in five configurations. Additionally, we 
considered two fixed values for the charm quark mass: mc 
= 1.4 GeV and mc = 1.27 GeV. The resulting     values for 
mc = 1.4 GeV ranged from 1.238 to 1.312, and for mc = 
1.27 GeV ranged from 1.233 to 1.354.

χ 2

σ r

χ 2



Numerical results and discussion
■ We define the saturation scale extracted               , where 

rS is the saturation radius, as a scale where the dipole 
scattering amplitude has a value 

■

N(x,rS ,b) = 1− exp(−1/ 2) = 0.4

QS
2 = 1/ rS

2



Numerical results and discussion

■ We chose the range of 
0.85 GeV2 < Q2 < 30 
GeV2 and x ≤ 10−2 for our 
χ2 calculation to balance 
two key factors: validity of 
the BK equation and 
maximize the data 
included in the fitting 
process. The lower Q2 
limit stems from non-
perturbative corrections 
applied to the virtual 
photon wave function.
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Numerical results and discussion
■ The      values for each plot corresponding to inclusive 

processes yielded: 

■ The      values for each plot corresponding to exclusive 
processes yielded: 

■

χ 2

χ 2



Conclusions
■ The CGC/saturation NLO dipole model, when confronted 

with experimental HERA data, exhibits good overall 
agreement within the specified kinematic range (Q2 ∈ 
[0.85, 30] GeV2 and x < 10−2). This suggests that the 
model accurately represents various aspects of both 
inclusive DIS and exclusive diffractive processes. 

■ The model's ability to accurately predict forthcoming DIS 
experiments, as demonstrated by extending theoretical 
estimates beyond existing data kinematics, underscores 
its robustness and applicability for future high-energy 
QCD studies. 

■ Overall, our results show good agreement with 
experimental data across a wide range of kinematic 
conditions, providing valuable insights for the 
development of reliable predictions in high-energy QCD.



Thanks for listening! Gracias.


