(Towards) Reconciling the kinematical constraint with the JIMWLK evolution equation

Piotr Korcyl

in collaboration with L. Motyka and T. Stebel

DIS2024, Grenoble, 8-13 April 2024
national science centre This work is supported by NCN grant nr 2022/46/E/ST2/00346.

Evolution equations

$\ln Q^{2}$ and $\ln 1 / x$ evolution

Evolution equations

Color Glass Condensate framework

- effective description valid in the saturation regime, where dense and slow gluons (target) are described by classical fields traversed by a fast and energetic probe (projectile),

```
[review by Gelis, Iancu, Jalilian-Marian, Venugopalan '10]
```

- basic degrees of freedom:
- Wilson lines

$$
U(\vec{x})
$$

- dipole correlation function

$$
S(\vec{r})=\left\langle\operatorname{tr}\left[U^{\dagger}(\vec{x}) U(\vec{x}+\vec{r})\right]\right\rangle_{\vec{x}} .
$$

- for forward and nearly back-to-back jets, one can apply both the TMD factorization and Color Glass Condensate (CGC) approaches to compute the di-jet cross-section

```
[Marquet, Petreska, Roiesnel '16, Caucal, Salazar, Schenke, Stebel,
Venugopalan '23]
```


Evolution equations

Evolution

- assuming a given distribution predict the distribution at larger Q^{2}
- DGLAP equation
- assuming a given distribution predict the distribution at small x
- BFKL (linear) equation
- JIMWLK (non-linear) equation
- BK (non-linear at leading color factor N) equation

Precision

- LO: fixed coupling constant, tree-level splitting and recombination amplitudes
- NLO: running coupling constant, NLO splitting and recombination amplitudes
- resummation: LO + all-order resummation of a particular class of contributions
- kinematical constraint: resummation of contributions with $\left(\alpha_{s} \ln x\right)$

Kinematical constraint

BK with collinear improvement

- ordering of dipole lifetimes/sizes
- natural in the language of dipoles
- worked out and implemented for the BFKL and BK equations
- evolution equation in the target rapidity η
[Ducloué, Iancu, Soyez, Triantafyllopoulos '19]
$\begin{aligned} \frac{\partial \bar{S}_{r=|x-y|}(\eta)}{\partial \eta}=\frac{\bar{\alpha}_{s}}{2 \pi} \int d^{2} z & \frac{(x-y)^{2}}{(x-z)^{2}(z-y)^{2}} \theta\left(\eta-\delta_{x y z}\right) \times \\ & \times\left[\bar{S}_{x z}\left(\eta-\delta_{x z, r}\right) \bar{S}_{z y}\left(\eta-\delta_{z y, r}\right)-\bar{S}_{x y}(\eta)\right]\end{aligned}$
- rapidity shifts $\delta_{x z, r}=\max \left\{0, \ln \frac{r^{2}}{|x-z|^{2}}\right\}$
- $\delta_{x y z}=\max \left\{\delta_{x z, r}, \delta_{z y}, r\right\}$

Kinematical constraint

BK with collinear improvement

JIMWLK evolution equation

Beyond the leading N order

- JIMWLK equation describes the non-linear small-x evolution
- it uses Wilson lines as fundamental degrees of freedom
- two-point correlation function $\left\langle U^{\dagger}(x) U(y)\right\rangle$ gives the dipole amplitude
- two-point correlation functions with derivatives provide a basis for small- x TMD structure functions

LO JIMWLK: Langevin formulation

$$
\begin{aligned}
U(\mathrm{x}, s+\delta s)=\exp (-\sqrt{\delta s} & \left.\sum_{\mathrm{y}} U(\mathrm{y}, s)(\mathrm{K}(\mathrm{x}-\mathrm{y}) \cdot \xi(\mathrm{y})) U^{\dagger}(\mathrm{y}, s)\right) \times \\
& \times U(\mathrm{x}, \mathrm{~s}) \times \exp \left(\sqrt{\delta s} \sum_{\mathrm{y}} \mathrm{~K}(\mathrm{x}-\mathrm{y}) \cdot \xi(\mathrm{y})\right)
\end{aligned}
$$

[Rummukainen, Weigert '04, Lappi, Mantysaari '14]

JIMWLK evolution equation

Saturation scale evolution speed

Figure: $R_{\text {initial }} \Lambda$ is the only parameter of the initial condition and of the evolution. Coinciding data from evolution for different values of $R_{\text {initial }} \Lambda$ corresponds to geometrical scaling.

JIMWLK in η with collinear improvement

Collinear improvement

All order resummation of corrections enhanced by kinematical constraints. Known from BFKL studies to be important to correctly describe phenomenology.
We build upon the proposal [Hatta, Iancu '16].

Proposal

$$
\begin{aligned}
& U(\mathrm{x}, R, \eta+\delta \varepsilon)= \\
& \begin{aligned}
\exp \left(-\sqrt{\delta \varepsilon} \sum_{\mathrm{y}} \sqrt{\alpha_{s}} \theta\left(s-P_{x y}^{R}\right)\right. & \left.U\left(\mathrm{y}, \hat{R}, s-\Delta_{x y}^{R}\right)\left[\mathrm{K}_{\mathrm{xy}} \cdot \xi(\mathrm{y})\right] U^{\dagger}\left(\mathrm{y}, \hat{R}, s-\Delta_{x y}^{R}\right)\right) \\
\times & U(\mathrm{x}, R, s) \times \\
& \exp \left(\sqrt{\delta \varepsilon} \sum_{\mathrm{y}} \sqrt{\alpha_{s}} \theta\left(s-P_{x y}^{R}\right) \mathrm{K}_{\mathrm{xy}} \cdot \xi(\mathrm{y})\right),
\end{aligned} \\
& P_{x y}^{R}=\ln \frac{R^{2}}{(\mathrm{x}-\mathrm{y})^{2}}, \Delta_{x y}^{R}=\theta(|x-y|-R) \rho_{x y}^{R}, \hat{R}=\max (|x-y|, R), s=\varepsilon \alpha_{s} .
\end{aligned}
$$

JIMWLK in η with collinear improvement

Figure: Preliminary results for the dipole amplitude with KC JIMWLK evolution equation at $\eta=3.0$.

JIMWLK in η with collinear improvement

Reduction to the BK equation in η

In order to establish the dependence on η we expand $S(\mathrm{x}, \mathrm{y}=\mathrm{x}+r, \eta+\varepsilon)$ in ε,

$$
S(\mathrm{x}, \mathrm{y}=\mathrm{x}+r, \eta+\varepsilon)=\frac{1}{N_{c}}\left\langle\operatorname{tr} U^{\dagger}(\mathrm{x}, r, \eta+\varepsilon) U(\mathrm{x}+r, r, \eta+\varepsilon)\right\rangle .
$$

All the terms yield:

$$
\begin{aligned}
& \frac{\partial S(x, y, \eta)}{\partial \eta}=\frac{\bar{\alpha}_{s}}{2 \pi} \int_{z} S(x, y, \eta) \\
& \left\{\begin{array}{l}
\left\{\theta\left(n \varepsilon-\delta_{r_{y z}}^{r}\right) K_{y z}^{i} K_{y z}^{i}-\theta\left(n \varepsilon-\delta_{r_{x z}}^{r}\right) K_{x z}^{i} K_{x z}^{i}+\theta\left(n \varepsilon-\delta_{r_{z z}}^{r}\right) \theta\left(n \varepsilon-\delta_{r_{y z}}^{r}\right) K_{x z}^{i} K_{y z}^{i}\right\}+ \\
\quad+\left\{\theta\left(n \varepsilon-\delta_{r_{y z}}^{r}\right) K_{y z}^{i} K_{y z}^{i} S_{2}\left(x, z, z, y, \delta_{y z}, \delta_{y z}, \eta\right)+\right. \\
\quad+\theta\left(n \varepsilon-\delta_{r_{z}}^{r}\right) K_{x z}^{i} K_{x z}^{i} S_{2}\left(x, z, z, y, \delta_{x z}, \delta_{x z}, \eta\right)+ \\
\quad-\theta\left(n \varepsilon-\delta_{r_{x z}}^{r}\right) \theta\left(n \varepsilon-\delta_{r_{y z}}^{r}\right) K_{x z}^{i} K_{y z}^{i} S_{2}\left(x, z, z, y, \delta_{y z}, \delta_{y z}, \eta\right)+ \\
\left.\quad-\theta\left(n \varepsilon-\delta_{r_{x z}}^{r}\right) \theta\left(n \varepsilon-\delta_{r_{y z}}^{r}\right) K_{x z}^{i} K_{y z}^{i} S_{2}\left(x, z, z, y, \delta_{x z}, \delta_{x z}, \eta\right)\right\}+ \\
\quad \quad+\theta\left(n \varepsilon-\delta_{r_{x z}}^{r}\right) \theta\left(n \varepsilon-\delta_{r_{y z}}^{r}\right) K_{x z}^{i} K_{y z}^{i} S_{6}\left(x, z, z, y, \delta_{x z}, \delta_{y z}, \eta\right)
\end{array}\right.
\end{aligned}
$$

JIMWLK in η with collinear improvement

Recovering KC BK equation in η

$$
\begin{aligned}
& S_{6}\left(\mathrm{x}, \mathrm{z}, \mathrm{z}, \mathrm{y}, \delta_{x z}, \delta_{y z}, \eta\right)= \\
& =\frac{1}{N_{c}^{2}} \operatorname{tr}\left[U_{n \varepsilon-\delta_{r x z}^{r}}(\mathrm{z}, r) U_{n \varepsilon}^{\dagger}(\mathrm{x}, r) U_{n \varepsilon}(\mathrm{y}, r) U_{n \varepsilon-\delta_{r y z}^{r}}^{\dagger}(\mathrm{z}, r)\right] \times \\
& \quad \times \operatorname{tr}\left[U_{n \varepsilon-\delta_{r x z}^{r}}^{\dagger}(\mathrm{z}, r) U_{n \varepsilon-\delta_{r y z}^{r}}(\mathrm{z}, r)\right]= \\
& \quad=\frac{1}{N_{c}} \operatorname{tr}\left[U_{n \varepsilon}^{\dagger}(\mathrm{x}, r) U_{n \varepsilon}(\mathrm{y}, r)\right]=S(\mathrm{x}, \mathrm{y}, \eta)
\end{aligned}
$$

Assuming that $\delta_{x z}=\delta_{y z}=\delta$ we have and setting

$$
S\left(x, y, \eta, \eta-\delta_{x z}\right) \equiv S\left(x, y, \eta-\delta_{x z}\right)
$$

in that case the final results reduces to

$$
\frac{\partial S(\mathrm{x}, \mathrm{y}, \eta)}{\partial \eta}=\frac{\bar{\alpha}_{\mathrm{s}}}{2 \pi} \int_{\mathrm{z}} \mathscr{K}_{\mathrm{xyz}} \theta(n \varepsilon-\delta)\{S(\mathrm{x}, \mathrm{z}, \eta-\delta) S(\mathrm{z}, \mathrm{y}, \eta-\delta)-S(\mathrm{x}, \mathrm{y}, \eta)\}
$$

JIMWLK in η with collinear improvement

Recovering KC BK equation in η

In order to diagnoze the dynamics we investigate new correlation functions. The simplest is the correlation in η

$$
\begin{aligned}
C(\eta) & =\frac{1}{V N_{c}}\left\langle\operatorname{tr} U^{\dagger}(x, 0) U(x, \eta)\right\rangle_{x}, \\
C(r, \eta) & =\frac{1}{V N_{c}}\left\langle\operatorname{tr} U^{\dagger}(x, r, 0) U(x, r, \eta)\right\rangle_{\times} .
\end{aligned}
$$

and even more generally

$$
\begin{aligned}
W(\mathrm{x}, \mathrm{y}, \eta) & =\frac{1}{N_{c}}\left\langle\operatorname{tr} U^{\dagger}(\mathrm{x}, 0) U(\mathrm{y}, \eta)\right\rangle, \\
W(\mathrm{x}, \mathrm{y}, r, \eta) & =\frac{1}{N_{c}}\left\langle\operatorname{tr} U^{\dagger}(\mathrm{x}, r, 0) U(\mathrm{y}, r, \eta)\right\rangle .
\end{aligned}
$$

JIMWLK in η with collinear improvement

BK-like equations for C, W and S

$$
\begin{aligned}
\frac{\partial W_{x, y}(\eta)}{\partial \eta} & =\frac{\bar{\alpha}_{s}}{2 \pi} \int_{z} \mathscr{K}_{x z}\left(S_{x, z}(\eta) W_{z, y}(\eta)-W_{x, y}(\eta)\right) \\
\frac{\partial C_{x}(\eta)}{\partial \eta} & =\frac{\bar{\alpha}_{s}}{2 \pi} \int_{z} \mathscr{K}_{x z}\left(S_{x, z}(\eta) W_{z, x}(\eta)-C_{x}(\eta)\right) \\
\frac{\left.\partial S_{x, y}(\eta)\right)}{\partial \eta} & =\frac{\bar{\alpha}_{s}}{2 \pi} \int_{z} \mathscr{M}_{x y z}\left(S_{x, z}(\eta) S_{z, y}(\eta)-S_{x, y}(\eta)\right)
\end{aligned}
$$

Initial slope of C can be estimated analytically

$$
\left.\left.\frac{\partial C_{x}(\eta)}{\partial \eta}\right|_{\eta=0}=\frac{\bar{\alpha}_{s}}{2 \pi} \int_{z} \mathscr{K}_{x z}\left(S_{x, z}(0) S_{z, x}(0)-1\right)\right)
$$

since $C(0)=1$ and we can take $S_{x, z}(0)=\exp \left(-\left(|x-z|^{2}\right) / 2 R^{2}\right)$.

JIMWLK in η with collinear improvement

BK-like equations for C, W and S

Figure: Comparison of the initial slope of $C(\eta)$ with the semi-analytic calculation in the continuum.

JIMWLK in η with collinear improvement

BK-like equations for C, W and S

Figure: Comparison of the initial slope of $C(\eta)$ with the semi-analytic calculation in the continuum.

JIMWLK in η with collinear improvement

C as a function of η

Figure: Comparison of $C(\eta)$ calculated using JIMWLK and BK-like equations

JIMWLK in η with collinear improvement

Regularize the divergence with a gluon mass

[Gardi, Kuokkanen, Rummukainen, Weigert '07].

The gluon mass modifies the elementary kernel

$$
K_{x z}^{i}=\frac{(x-z)^{i}}{|x-z|^{2}} \rightarrow \frac{(x-z)^{i}}{|x-z|^{2}} e^{-m|x-z|}
$$

Then

$$
\mathscr{K}_{x z}=K_{x z}^{i} K_{x z}^{i} \rightarrow \frac{1}{|x-z|^{2}} e^{-2 m|x-z|}
$$

and

$$
\mathscr{M}_{x y z}=K_{x z}^{i} K_{x z}^{i}+K_{y z}^{i} K_{y z}^{i}-2 K_{x z}^{i} K_{y z}^{i}=\frac{\left((y-z) e^{-m|x-z|}-(x+z) e^{-m|y-z|}\right)^{2}}{(x-z)^{2}(y-z)^{2}}
$$

JIMWLK in η with collinear improvement

C as a function of η

Figure: $C(\eta)$ calculated using JIMWLK with gluon mass of 200 MeV

JIMWLK in η with collinear improvement

S as a function of η

Figure: $S(\eta)$ calculated using JIMWLK with gluon mass of 200 MeV

Conclusions

Summary

- we have identified the origin of the instability of the numerical setup
- We have regularized it by introducing a gluon mass
- however, it seems that there remains some problem
- still more work is needed.

