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Evolution equations

lnQ2 and ln1/x evolution
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Evolution equations

Color Glass Condensate framework
effective description valid in the saturation regime, where dense and
slow gluons (target) are described by classical fields traversed by a
fast and energetic probe (projectile),

[review by Gelis, Iancu, Jalilian-Marian, Venugopalan ’10]

basic degrees of freedom:
Wilson lines

U (⃗x)

dipole correlation function

S (⃗r) =
〈

tr
[
U†(⃗x)U (⃗x+ r⃗)

]〉
x⃗
.

for forward and nearly back-to-back jets, one can apply both the
TMD factorization and Color Glass Condensate (CGC) approaches
to compute the di-jet cross-section

[Marquet, Petreska, Roiesnel ’16, Caucal, Salazar, Schenke, Stebel,

Venugopalan ’23]
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Evolution equations

Evolution

assuming a given distribution predict the distribution at larger Q2

DGLAP equation

assuming a given distribution predict the distribution at small x
BFKL (linear) equation
JIMWLK (non-linear) equation
BK (non-linear at leading color factor N) equation

Precision
LO: fixed coupling constant, tree-level splitting and recombination
amplitudes
NLO: running coupling constant, NLO splitting and recombination
amplitudes
resummation: LO + all-order resummation of a particular class of
contributions

kinematical constraint: resummation of contributions with (αs lnx)
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Kinematical constraint

BK with collinear improvement

ordering of dipole lifetimes/sizes
natural in the language of dipoles
worked out and implemented for the BFKL and BK equations

[Motyka, Staśto ’09]

evolution equation in the target rapidity η

[Ducloué, Iancu, Soyez, Triantafyllopoulos ’19]

∂ S̄r=|x−y |(η)

∂η
=

ᾱs

2π

∫
d2z

(x−y)2

(x− z)2(z−y)2
θ

(
η −δxyz

)
×

×
[
S̄xz(η −δ xz ,r )S̄zy (η −δ zy ,r )− S̄xy (η)

]

rapidity shifts δ xz ,r =max{0, ln r2

|x−z |2 }

δxyz =max{δxz ,r ,δzy ,r}
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Kinematical constraint

BK with collinear improvement
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JIMWLK evolution equation

Beyond the leading N order

JIMWLK equation describes the non-linear small-x evolution
it uses Wilson lines as fundamental degrees of freedom
two-point correlation function ⟨U†(x)U(y)⟩ gives the dipole
amplitude
two-point correlation functions with derivatives provide a basis for
small-x TMD structure functions

LO JIMWLK: Langevin formulation

U(x,s+δ s) = exp

(
−
√

δ s∑
y
U(y,s)(K(x−y) ·ξ (y))U†(y,s)

)
×

×U(x,s)× exp

(
√

δ s∑
y

K(x−y) ·ξ (y)

)
.

[Rummukainen, Weigert ’04, Lappi, Mantysaari ’14]
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JIMWLK evolution equation

Saturation scale evolution speed
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Figure: RinitialΛ is the only parameter of the initial condition and of the
evolution. Coinciding data from evolution for different values of RinitialΛ
corresponds to geometrical scaling.
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JIMWLK in η with collinear improvement

Collinear improvement

All order resummation of corrections enhanced by kinematical
constraints. Known from BFKL studies to be important to correctly
describe phenomenology.
We build upon the proposal [Hatta, Iancu ’16].

Proposal

U(x,R,η +δε) =

exp
(
−
√

δε ∑
y

√
αsθ(s−PR

xy)U(y, R̂,s−∆R
xy )
[
Kxy ·ξ (y)

]
U†(y, R̂,s−∆R

xy )
)

×U(x,R,s)×

exp
(√

δε ∑
y

√
αsθ(s−PR

xy)Kxy ·ξ (y)
)
,

PR
xy = ln R2

(x−y)2 , ∆R
xy = θ

(
|x−y |−R

)
ρR

xy, R̂ =max(|x−y |,R), s = εαs .
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JIMWLK in η with collinear improvement
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Figure: Preliminary results for the dipole amplitude with KC JIMWLK evolution
equation at η = 3.0.
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JIMWLK in η with collinear improvement

Reduction to the BK equation in η

In order to establish the dependence on η we expand
S(x,y = x+ r ,η + ε) in ε,

S(x,y = x+ r ,η + ε) =
1
Nc

⟨trU†(x, r ,η + ε)U(x+ r , r ,η + ε)⟩.

All the terms yield:
∂S(x,y,η)

∂η
=

ᾱs

2π

∫
z
S(x,y,η){

−θ(nε−δ
r
ryz )K

i
yzK

i
yz−θ(nε−δ

r
rxz )K

i
xzK

i
xz+θ(nε−δ

r
rxz )θ(nε−δ

r
ryz )K

i
xzK

i
yz

}
+

+
{

θ(nε −δ
r
ryz )K

i
yzK

i
yzS2(x,z,z,y,δyz ,δyz ,η)+

+θ(nε −δ
r
rxz )K

i
xzK

i
xzS2(x,z,z,y,δxz ,δxz ,η)+

−θ(nε −δ
r
rxz )θ(nε −δ

r
ryz )K

i
xzK

i
yzS2(x,z,z,y,δyz ,δyz ,η)+

−θ(nε −δ
r
rxz )θ(nε −δ

r
ryz )K

i
xzK

i
yzS2(x,z,z,y,δxz ,δxz ,η)

}
+

+θ(nε −δ
r
rxz )θ(nε −δ

r
ryz )K

i
xzK

i
yzS6(x,z,z,y,δxz ,δyz ,η)
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JIMWLK in η with collinear improvement

Recovering KC BK equation in η

S6(x,z,z,y,δxz ,δyz ,η) =

=
1
N2
c

tr
[
Unε−δ r

rxz
(z, r)U†

nε(x, r)Unε(y, r)U†
nε−δ r

ryz
(z, r)

]
×

× tr
[
U†
nε−δ r

rxz
(z, r)Unε−δ r

ryz
(z, r)

]
=

=
1
Nc

tr
[
U†
nε(x, r)Unε(y, r)

]
= S(x,y,η)

Assuming that δxz = δyz = δ we have and setting

S(x,y,η ,η −δxz)≡ S(x,y,η −δxz)

in that case the final results reduces to

∂S(x,y,η)

∂η
=

ᾱs

2π

∫
z
Kxyzθ(nε−δ )

{
S(x,z,η−δ )S(z,y,η−δ )−S(x,y,η)

}
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JIMWLK in η with collinear improvement

Recovering KC BK equation in η

In order to diagnoze the dynamics we investigate new correlation
functions. The simplest is the correlation in η

C (η) =
1

VNc
⟨tr U†(x,0)U(x,η)⟩x,

C (r ,η) =
1

VNc
⟨tr U†(x, r ,0)U(x, r ,η)⟩x.

and even more generally

W (x,y,η) =
1
Nc

⟨tr U†(x,0)U(y,η)⟩,

W (x,y, r ,η) =
1
Nc

⟨tr U†(x, r ,0)U(y, r ,η)⟩.
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JIMWLK in η with collinear improvement

BK-like equations for C , W and S

∂Wx ,y (η)

∂η
=

ᾱs

2π

∫
z
Kxz

(
Sx ,z(η)Wz ,y (η)−Wx ,y (η)

)
∂Cx (η)

∂η
=

ᾱs

2π

∫
z
Kxz

(
Sx ,z(η)Wz ,x (η)−Cx (η)

)
∂Sx ,y (η))

∂η
=

ᾱs

2π

∫
z
Mxyz

(
Sx ,z(η)Sz ,y (η)−Sx ,y (η)

)
Initial slope of C can be estimated analytically

∂Cx (η)

∂η

∣∣∣
η=0

=
ᾱs

2π

∫
z
Kxz

(
Sx ,z(0)Sz ,x (0)−1)

)

since C (0) = 1 and we can take Sx ,z(0) = exp(−(|x− z|2)/2R2).
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JIMWLK in η with collinear improvement

BK-like equations for C , W and S

Figure: Comparison of the initial slope of C(η) with the semi-analytic
calculation in the continuum.
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JIMWLK in η with collinear improvement

BK-like equations for C , W and S

Figure: Comparison of the initial slope of C(η) with the semi-analytic
calculation in the continuum.
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JIMWLK in η with collinear improvement

C as a function of η

Figure: Comparison of C(η) calculated using JIMWLK and BK-like equations
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JIMWLK in η with collinear improvement

Regularize the divergence with a gluon mass
[Gardi, Kuokkanen, Rummukainen, Weigert ’07].

The gluon mass modifies the elementary kernel

K i
xz =

(x− z)i

|x− z|2
→ (x− z)i

|x− z|2
e−m|x−z|

Then
Kxz = K i

xzK
i
xz →

1
|x− z|2

e−2m|x−z|

and

Mxyz =K i
xzK

i
xz+K i

yzK
i
yz−2K i

xzK
i
yz =

(
(y − z)e−m|x−z|− (x+ z)e−m|y−z|)2

(x− z)2(y − z)2
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JIMWLK in η with collinear improvement

C as a function of η
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Figure: C(η) calculated using JIMWLK with gluon mass of 200 MeV
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JIMWLK in η with collinear improvement

S as a function of η
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Figure: S(η) calculated using JIMWLK with gluon mass of 200 MeV
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Conclusions

Summary

we have identified the origin of the instability of the numerical setup
We have regularized it by introducing a gluon mass
however, it seems that there remains some problem
still more work is needed.
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