(Towards) Reconciling the kinematical constraint with the JIMWLK evolution equation

Piotr Korcyl

in collaboration with L. Motyka and T. Stebel

DIS2024, Grenoble, 8-13 April 2024

National Science Centre This work is supported by NCN grant nr 2022/46/E/ST2/00346.

1/21

Evolution equations

< Ξ

Evolution equations

Color Glass Condensate framework

• effective description valid in the saturation regime, where dense and slow gluons (target) are described by classical fields traversed by a fast and energetic probe (projectile),

[review by Gelis, Iancu, Jalilian-Marian, Venugopalan '10]

- basic degrees of freedom:
 - Wilson lines

 $U(\vec{x})$

dipole correlation function

$$S(\vec{r}) = \left\langle \operatorname{tr} \left[U^{\dagger}(\vec{x}) U(\vec{x} + \vec{r}) \right] \right\rangle_{\vec{x}}.$$

• for forward and nearly back-to-back jets, one can apply both the TMD factorization and Color Glass Condensate (CGC) approaches to compute the di-jet cross-section

[Marquet, Petreska, Roiesnel '16, Caucal, Salazar, Schenke, Stebel, Venugopalan '23]

Evolution equations

Evolution

• assuming a given distribution predict the distribution at larger Q^2

- DGLAP equation
- assuming a given distribution predict the distribution at small x
 - BFKL (linear) equation
 - JIMWLK (non-linear) equation
 - BK (non-linear at leading color factor N) equation

Precision

- LO: fixed coupling constant, tree-level splitting and recombination amplitudes
- NLO: running coupling constant, NLO splitting and recombination amplitudes
- resummation: LO + all-order resummation of a particular class of contributions
 - kinematical constraint: resummation of contributions with $(\alpha_s \ln x)$

Kinematical constraint

BK with collinear improvement

- ordering of dipole lifetimes/sizes
- natural in the language of dipoles
- worked out and implemented for the BFKL and BK equations

[Motyka, Staśto '09]

ullet evolution equation in the target rapidity η

[Ducloué, Iancu, Soyez, Triantafyllopoulos '19]

$$\frac{\partial \bar{S}_{r=|x-y|}(\eta)}{\partial \eta} = \frac{\bar{\alpha}_s}{2\pi} \int d^2 z \frac{(x-y)^2}{(x-z)^2 (z-y)^2} \theta \left(\eta - \delta_{xyz}\right) \times \\ \times \left[\bar{S}_{xz}(\eta - \delta_{xz,r})\bar{S}_{zy}(\eta - \delta_{zy,r}) - \bar{S}_{xy}(\eta)\right]$$

- rapidity shifts $\delta_{xz,r} = \max\{0, \ln \frac{r^2}{|x-z|^2}\}$
- $\delta_{xyz} = \max{\{\delta_{xz,r}, \delta_{zy,r}\}}$

Kinematical constraint

BK with collinear improvement

Beyond the leading N order

- JIMWLK equation describes the non-linear small-x evolution
- it uses Wilson lines as fundamental degrees of freedom
- two-point correlation function $\langle U^{\dagger}(x)U(y)\rangle$ gives the dipole amplitude
- two-point correlation functions with derivatives provide a basis for small-x TMD structure functions

LO JIMWLK: Langevin formulation

$$U(\mathbf{x}, \mathbf{s} + \delta \mathbf{s}) = \exp\left(-\sqrt{\delta s} \sum_{\mathbf{y}} U(\mathbf{y}, \mathbf{s}) (\mathsf{K}(\mathbf{x} - \mathbf{y}) \cdot \boldsymbol{\xi}(\mathbf{y})) U^{\dagger}(\mathbf{y}, \mathbf{s})\right) \times \\ \times \frac{U(\mathbf{x}, \mathbf{s})}{\sum_{\mathbf{y}} \mathsf{K}(\mathbf{x} - \mathbf{y}) \cdot \boldsymbol{\xi}(\mathbf{y})}$$
[Rummukainen, Weigert '04, Lappi, Mantysaari '14]

JIMWLK evolution equation

Saturation scale evolution speed

Figure: $R_{\text{initial}}\Lambda$ is the only parameter of the initial condition and of the evolution. Coinciding data from evolution for different values of $R_{\text{initial}}\Lambda$ corresponds to geometrical scaling.

Collinear improvement

All order resummation of corrections enhanced by kinematical constraints. Known from BFKL studies to be important to correctly describe phenomenology.

We build upon the proposal [Hatta, Iancu '16].

Proposal

$$\begin{split} U(\mathbf{x}, \mathbf{R}, \boldsymbol{\eta} + \delta \varepsilon) &= \\ \exp\left(-\sqrt{\delta \varepsilon} \sum_{\mathbf{y}} \sqrt{\alpha_s} \boldsymbol{\theta}(s - P_{\mathbf{xy}}^R) U(\mathbf{y}, \hat{\mathbf{R}}, s - \Delta_{\mathbf{xy}}^R) [\mathsf{K}_{\mathbf{xy}} \cdot \boldsymbol{\xi}(\mathbf{y})] U^{\dagger}(\mathbf{y}, \hat{\mathbf{R}}, s - \Delta_{\mathbf{xy}}^R) \right) \\ &\times U(\mathbf{x}, \mathbf{R}, s) \times \\ &\exp\left(\sqrt{\delta \varepsilon} \sum_{\mathbf{y}} \sqrt{\alpha_s} \boldsymbol{\theta}(s - P_{\mathbf{xy}}^R) \mathsf{K}_{\mathbf{xy}} \cdot \boldsymbol{\xi}(\mathbf{y})\right), \\ P_{\mathbf{xy}}^R &= \ln \frac{R^2}{(\mathbf{x} - \mathbf{y})^2}, \ \Delta_{\mathbf{xy}}^R = \boldsymbol{\theta}(|\mathbf{x} - \mathbf{y}| - R) \rho_{\mathbf{xy}}^R, \ \hat{R} = \max(|\mathbf{x} - \mathbf{y}|, R), \ s = \varepsilon \alpha_s. \end{split}$$

Figure: Preliminary results for the dipole amplitude with KC JIMWLK evolution equation at $\eta = 3.0$.

Reduction to the BK equation in η

In order to establish the dependence on η we expand $S({\rm x},{\rm y}={\rm x}+r,\eta+\varepsilon)$ in $\varepsilon,$

$$S(\mathbf{x},\mathbf{y}=\mathbf{x}+r,\boldsymbol{\eta}+\boldsymbol{\varepsilon})=\frac{1}{N_c}\langle \mathrm{tr} U^{\dagger}(\mathbf{x},r,\boldsymbol{\eta}+\boldsymbol{\varepsilon})U(\mathbf{x}+r,r,\boldsymbol{\eta}+\boldsymbol{\varepsilon})\rangle.$$

All the terms yield:

$$\begin{aligned} \frac{\partial S(\mathsf{x},\mathsf{y},\boldsymbol{\eta})}{\partial \eta} &= \frac{\bar{\alpha}_s}{2\pi} \int_z S(\mathsf{x},\mathsf{y},\boldsymbol{\eta}) \\ \left\{ -\theta(n\varepsilon - \delta^r_{r_{yz}}) \mathcal{K}^i_{yz} \mathcal{K}^i_{yz} - \theta(n\varepsilon - \delta^r_{r_{xz}}) \mathcal{K}^i_{xz} \mathcal{K}^i_{xz} + \theta(n\varepsilon - \delta^r_{r_{xz}}) \theta(n\varepsilon - \delta^r_{r_{yz}}) \mathcal{K}^i_{xz} \mathcal{K}^i_{yz} \right\} + \\ &+ \left\{ \theta(n\varepsilon - \delta^r_{r_{yz}}) \mathcal{K}^i_{yz} \mathcal{K}^i_{yz} S_2(\mathsf{x}, \mathsf{z}, \mathsf{z}, \mathsf{y}, \delta_{yz}, \delta_{yz}, \eta) + \\ &+ \theta(n\varepsilon - \delta^r_{r_{xz}}) \mathcal{K}^i_{xz} \mathcal{K}^i_{xz} S_2(\mathsf{x}, \mathsf{z}, \mathsf{z}, \mathsf{y}, \delta_{xz}, \delta_{xz}, \eta) + \\ &- \theta(n\varepsilon - \delta^r_{r_{xz}}) \theta(n\varepsilon - \delta^r_{r_{yz}}) \mathcal{K}^i_{xz} \mathcal{K}^i_{yz} S_2(\mathsf{x}, \mathsf{z}, \mathsf{z}, \mathsf{y}, \delta_{xz}, \delta_{yz}, \eta) + \\ &- \theta(n\varepsilon - \delta^r_{r_{xz}}) \theta(n\varepsilon - \delta^r_{r_{yz}}) \mathcal{K}^i_{xz} \mathcal{K}^i_{yz} S_2(\mathsf{x}, \mathsf{z}, \mathsf{z}, \mathsf{y}, \delta_{xz}, \delta_{xz}, \eta) \right\} + \\ &+ \theta(n\varepsilon - \delta^r_{r_{xz}}) \theta(n\varepsilon - \delta^r_{r_{yz}}) \mathcal{K}^i_{xz} \mathcal{K}^i_{yz} S_2(\mathsf{x}, \mathsf{z}, \mathsf{z}, \mathsf{y}, \delta_{xz}, \delta_{xz}, \eta) \right\} + \\ &+ \theta(n\varepsilon - \delta^r_{r_{xz}}) \theta(n\varepsilon - \delta^r_{r_{yz}}) \mathcal{K}^i_{xz} \mathcal{K}^i_{yz} S_6(\mathsf{x}, \mathsf{z}, \mathsf{z}, \mathsf{y}, \delta_{xz}, \delta_{yz}, \eta) \end{aligned}$$

Recovering KC BK equation in η

$$\begin{split} S_{6}(\mathsf{x},\mathsf{z},\mathsf{z},\mathsf{y},\delta_{xz},\delta_{yz},\eta) &= \\ &= \frac{1}{N_{c}^{2}} \mathrm{tr} \big[U_{n\varepsilon-\delta_{r_{xz}}^{r}}(\mathsf{z},r) U_{n\varepsilon}^{\dagger}(\mathsf{x},r) U_{n\varepsilon}(\mathsf{y},r) U_{n\varepsilon-\delta_{r_{yz}}^{r}}^{\dagger}(\mathsf{z},r) \big] \times \\ & \times \mathrm{tr} \big[U_{n\varepsilon-\delta_{r_{xz}}^{r}}^{\dagger}(\mathsf{z},r) U_{n\varepsilon-\delta_{r_{yz}}^{r}}(\mathsf{z},r) \big] = \\ &= \frac{1}{N_{c}} \mathrm{tr} \big[U_{n\varepsilon}^{\dagger}(\mathsf{x},r) U_{n\varepsilon}(\mathsf{y},r) \big] = S(\mathsf{x},\mathsf{y},\eta) \big] \end{split}$$

Assuming that $\delta_{xz} = \delta_{yz} = \delta$ we have and setting

$$S(x,y,\eta,\eta-\delta_{xz})\equiv S(x,y,\eta-\delta_{xz})$$

in that case the final results reduces to

$$\frac{\partial S(\mathbf{x},\mathbf{y},\boldsymbol{\eta})}{\partial \boldsymbol{\eta}} = \frac{\bar{\alpha}_{s}}{2\pi} \int_{z} \mathscr{K}_{xyz} \theta(n\varepsilon - \delta) \Big\{ S(\mathbf{x},z,\boldsymbol{\eta} - \delta) S(z,y,\boldsymbol{\eta} - \delta) - S(\mathbf{x},y,\boldsymbol{\eta}) \Big\}$$

Recovering KC BK equation in η

In order to diagnoze the dynamics we investigate new correlation functions. The simplest is the correlation in η

$$C(\boldsymbol{\eta}) = \frac{1}{VN_c} \langle \operatorname{tr} \ U^{\dagger}(\mathbf{x}, \mathbf{0}) U(\mathbf{x}, \boldsymbol{\eta}) \rangle_{\mathbf{x}},$$
$$C(r, \boldsymbol{\eta}) = \frac{1}{VN_c} \langle \operatorname{tr} \ U^{\dagger}(\mathbf{x}, r, \mathbf{0}) U(\mathbf{x}, r, \boldsymbol{\eta}) \rangle_{\mathbf{x}}$$

and even more generally

$$W(\mathbf{x},\mathbf{y},\boldsymbol{\eta}) = \frac{1}{N_c} \langle \operatorname{tr} U^{\dagger}(\mathbf{x},\mathbf{0}) U(\mathbf{y},\boldsymbol{\eta}) \rangle,$$
$$W(\mathbf{x},\mathbf{y},r,\boldsymbol{\eta}) = \frac{1}{N_c} \langle \operatorname{tr} U^{\dagger}(\mathbf{x},r,\mathbf{0}) U(\mathbf{y},r,\boldsymbol{\eta}) \rangle.$$

BK-like equations for C, W and S

$$\frac{\partial W_{x,y}(\eta)}{\partial \eta} = \frac{\bar{\alpha}_s}{2\pi} \int_z \mathscr{K}_{xz} \Big(S_{x,z}(\eta) W_{z,y}(\eta) - W_{x,y}(\eta) \Big) \\ \frac{\partial C_x(\eta)}{\partial \eta} = \frac{\bar{\alpha}_s}{2\pi} \int_z \mathscr{K}_{xz} \Big(S_{x,z}(\eta) W_{z,x}(\eta) - C_x(\eta) \Big) \\ \frac{\partial S_{x,y}(\eta)}{\partial \eta} = \frac{\bar{\alpha}_s}{2\pi} \int_z \mathscr{M}_{xyz} \Big(S_{x,z}(\eta) S_{z,y}(\eta) - S_{x,y}(\eta) \Big)$$

Initial slope of C can be estimated analytically

$$\frac{\partial C_{x}(\eta)}{\partial \eta}\Big|_{\eta=0} = \frac{\bar{\alpha}_{s}}{2\pi} \int_{z} \mathscr{K}_{xz} \Big(S_{x,z}(0) S_{z,x}(0) - 1 \Big) \Big)$$

since C(0) = 1 and we can take $S_{x,z}(0) = \exp(-(|x-z|^2)/2R^2)$.

Figure: Comparison of the initial slope of $C(\eta)$ with the semi-analytic calculation in the continuum.

Regularize the divergence with a gluon mass

[Gardi, Kuokkanen, Rummukainen, Weigert '07].

The gluon mass modifies the elementary kernel

$$\mathcal{K}_{\mathbf{x}\mathbf{z}}^{i} = rac{(\mathbf{x} - \mathbf{z})^{i}}{|\mathbf{x} - \mathbf{z}|^{2}}
ightarrow rac{(\mathbf{x} - \mathbf{z})^{i}}{|\mathbf{x} - \mathbf{z}|^{2}} e^{-m|\mathbf{x} - \mathbf{z}|^{2}}$$

Then

$$\mathscr{K}_{xz} = \mathcal{K}_{xz}^i \mathcal{K}_{xz}^i \to \frac{1}{|\mathbf{x} - \mathbf{z}|^2} e^{-2m|\mathbf{x} - \mathbf{z}|^2}$$

and

$$\mathcal{M}_{xyz} = \mathcal{K}_{xz}^{i} \mathcal{K}_{xz}^{i} + \mathcal{K}_{yz}^{i} \mathcal{K}_{yz}^{i} - 2\mathcal{K}_{xz}^{i} \mathcal{K}_{yz}^{i} = \frac{\left((y-z)e^{-m|x-z|} - (x+z)e^{-m|y-z|}\right)^{2}}{(x-z)^{2}(y-z)^{2}}$$

C as a function of η

Figure: $C(\eta)$ calculated using JIMWLK with gluon mass of 200 MeV

4 B b

S as a function of η

Figure: $S(\eta)$ calculated using JIMWLK with gluon mass of 200 MeV

Summary

- we have identified the origin of the instability of the numerical setup
- We have regularized it by introducing a gluon mass
- however, it seems that there remains some problem
- still more work is needed.