On the Interplay of Nuclear and Higher-Twist Corrections at Large \boldsymbol{x}

S. Alekhin

University of Hamburg, Germany

S. Kulagin

INR Moscow

R. Petti

University of South Carolina, Columbia SC, USA

DIS 2024 April 10th, 2024, Grenoble, France

- Precision studies of high-energy processes with nuclei require an understanding of nuclear effects at the parton level, which were observed to survive at $Q \gg 1$ GeV/c.
- ♦ The study of nuclear corrections in ${}^2H, {}^3H, {}^3He$ provides insights into the mechanisms responsible for modifications of PDFs in the nuclear environment:
 - Dynamics of A=2 and A=3 nuclei better understood than the dynamics of many-particle nuclei;
 - Effects of the momentum distribution, nuclear binding and off-shell modification of bound nucleons driven by the wave/spectral function, which is directly related to the underlying N-N interaction.
 - \implies Verify consistency with universal off-shell function from $A \geq 4$ nuclear targets
- ♦ Global QCD analysis with ${}^{2}H, {}^{3}H, {}^{3}He$:
 - Determination of the off-shell function along with proton PDFs;
 - Interplay between nuclear corrections and higher-twist (HT) contributions in DIS at large x;
 - Large n-p asymmetry of 3H and 3He allows to probe isospin effects in nuclear corrections.
 - ⇒ Study flavor dependece of modifications of PDFs in the nuclear environment

Microscopic Kulagin-Petti (KP) model [NPA 765 (2006) 126, PRC 90 (2014) 045204]. At large x nuclear DIS dominated by incoherent scattering off bound nucleons:

◆ FERMI MOTION AND BINDING effects in nuclear PDFs from the convolution of nuclear spectral function with (bound) nucleon PDFs:

$$F_2^A = \sum_{i=p,n} \int d\varepsilon d^3 \mathbf{p} \, \mathcal{P}_i(\varepsilon, \mathbf{p}) K_2 F_2^i(x', Q^2, p^2)$$

where $x' = Q^2/(2p \cdot q)$ and $p = (M + \varepsilon, \mathbf{p})$ and K_2 kinematic factor $(K_2 \approx 1 + p_z/M \text{ for } Q \gg M)$.

• Since bound nucleons are OFF-MASS-SHELL there appears dependence on the nucleon virtuality $p^2=(M+\varepsilon)^2-\mathbf{p}^2$ and expanding PDFs in the small $(p^2-M^2)/M^2$: $F_2^i(x,Q^2,p^2)\approx F_2^i(x,Q^2,p^2=M^2)\left(1+\delta f(x)(p^2-M^2)/M^2\right)$.

where we introduced a universal function for the NUCLEON: $\delta f(x)$

⇒ Modification of bound nucleon partonic structure in the nuclear environment

Model includes meson-exchange current (MEC) correction balancing nuclear light-cone momentum and coherent multiple scattering effects responsible for nuclear shadowing [NPA 765 (2006) 126, arXiv:hep-ph/0412425]

Microscopic KP model provides quantitative description of available data: $\chi^2/N_{\rm Data} = 466.6/586$ for DIS data with $Q^2 \geq 1$ GeV²

⇒ Evidence for off-shell modification of bound nucleons from inclusive DIS

Predictions from KP model in excellent agreement with Drell-Yan and W^\pm/Z boson production in pPb collisions up to $Q^2=m_{W,Z}^2$ (PRC 90 (2014) 045204; PRD 94 (2016) 113013)

♦ Structure functions are parameterized in the NNLO QCD approximation, supplemented by two (isoscalar) High Twist (HT) corrections to F_2 and F_T :

$$F_{2,T}(x,Q^2) = F_{2,T}^{LT,TMC}(x,Q^2) + \frac{H_{2,T}^N(x)}{Q^2}$$

- Target mass corrections (TMC) in the Leading Twist (LT) term following Georgi-Politzer;
- Fixed flavor number scheme (FFNS) with $n_f = 3$ and $\overline{\rm MS}$ running masses for heavy quarks;
- PDFs are parameterized following ABMP16 at the initial scale $Q_0^2=9~{\rm GeV^2}$ [PRD 96 (2017) 014011];
- ullet Analysis performed in the region $Q^2>2.5~GeV^2$ and $W^2>3~GeV^2$.
- ◆ Off-shell function parameterized as generic second order polynomial to avoid modeldependent biases related to the functional form used:

$$\delta f(x) = a + bx + cx^2$$

- Neglect nuclear effects related to meson exchange currents and shadowing since focus at x > 0.1;
- ²H wave functions: AV18 (default), Paris, CD-Bonn, WJC1, WJC2.
- ³H and ³He spectral functions: Rome with AV18 NN (default), Hannover with Paris NN.
- \implies Simultaneous extraction of $\delta f(x)$, PDFs, and HT from global QCD analysis

PRD 107 (2023) L051506; PRD 105 (2022) 114037; PRD 96 (2017) 054005

RESULTS ON $\delta f(x)$

- ◆ Different Q² dependence allows to disentangle off-shell correction from PDFs and HT
- Results on $\delta f(x)$ agree with heavy target determination $(A \ge 4)$ and our previous extraction from D data.
- ♦ Determination of δf from QCD fits stable against all systematics studied.
- \implies Agreement with KP predictions based on δf universality

♦ Multiplicative vs. additive implementation of High Twist (HT) terms:

$$F_{2,T}(x,Q^2) = F_{2,T}^{\text{LT,TMC}}(x,Q^2) + H_{2,T}^N(x)/Q^2$$

$$F_{2,T}(x,Q^2) = F_{2,T}^{\text{LT,TMC}}(x,Q^2) + F_{2,T}^{\text{LT}}(x,Q^2)h_{2,T}^N(x)/Q^2$$

- \Longrightarrow Study impact of HT model on determination of LT and off-shell function δf
- ◆ Neutron-proton asymmetry in off-shell modification of bound nucleons parameterized as generic first order polynomial:

$$\delta f^a(x) \equiv \delta f^n(x) - \delta f^p(x) = a_1 + b_1 x$$

- Universality of isoscalar δf for all nuclei verified with wide range of targets with A \geq 4 [NPA 765 (2006) 126], A=3 [PRC 82 (2010) 054614, PRL 128 (2022) 132002], and A=2 [PRD 105 (2022) 114037; PRD 96 (2017) 054005];
- MARATHON $\sigma^{^{3}He}/\sigma^{^{3}H}$ data [PRL 128 (2022) 132003] provides good sensitivity to n-p differences.
- \implies Test/constrain a possible isospin dependence in the off-shell function δf

- ♦ Different Q^2 dependence for additive (aHT) and multiplicative (mHT) HT due to the interplay with LT.
- Consistent results from our fits with additive and multiplicative HT.
- ♦ Intrinsic n-p difference in HT for multiplicative HT from the LT factor with isoscalar $h_{2,T}^N$ coeffficients:

$$F_{2,T}^{n} = F_{2,T}^{\text{LT,n}} \left(1 + h_{2,T}^{N} / Q^{2} \right)$$
$$F_{2,T}^{p} = F_{2,T}^{\text{LT,p}} \left(1 + h_{2,T}^{N} / Q^{2} \right)$$

 \Longrightarrow Cancellation of HT terms in ratio $F_{2,T}^n/F_{2,T}^p=F_{2,T}^{\mathrm{LT,n}}/F_{2,T}^{\mathrm{LT,p}}$

- MARATHON $\sigma^{^3He}/\sigma^{^3H}$ allows an extraction of the n-p asymmetry $\delta f^a(x)$.
- ♦ Same δf obtained for protons and neutrons with additive HT model.
- ♦ Non-zero n-p asymmetry δf^a found with multiplicative HT model.
- ⇒ Bias introduced by LT-HT interplay in multiplicative HT model

- ♦ MARATHON data prefers aHT over mHT model: $\chi^2/\text{NDP} = 20/22$ vs. 34/22.
- lacktriangledow Fitting MARATHON $\sigma^{^3He}/\sigma^{^3H}$ with mHT results in substantial d/u enhancement.
 - \implies Enhancement of d/u correlated with the non-zero n-p asymmetry δf^a with mHT

- Include $\sigma^{^3He}/\sigma^{^2H}$ data from JLab E03103 and HERMES in the analysis. [PRL 103 (2009) 202301; PLB 567 (2003) 339]
- Replace MARATHON $\sigma^{^{3}He}/\sigma^{^{3}H}$ with preliminary $\sigma^{^{3}He}/\sigma^{^{2}H}$ and $\sigma^{^{3}H}/\sigma^{^{2}H}$ data in analysis [F. Hauenstein, HiX2019].
- Significant reduction of uncertainties on the n-p asymmetry $\delta f^a(x)$.
- \implies No evidence for isospin dependence of δf from all 3 He and 3 H data

- ◆ Different nuclear corrections for d and u from convolution of their proton PDF shapes
- lacktriangle Nuclear dependence of d,u modifications from p spectral functions in ${}^3{\rm He}$ and ${}^3{\rm H.}$
 - \Longrightarrow Significant isovector effects are present even with isoscalar off-shell $\delta f^n=\delta f^p$

- lacktriangle Isospin dependence of δf probed with parity-violating DIS in SoLID at JLab (PVEMC)
- lacktriangle Enhancement on asymmetry $a_1(x)$ in 48 Ca even with isoscalar off-shell $\delta f^n = \delta f^p$
 - ⇒ Expected effects comparable to models with explicit isovector modifications

 EPJA 59 (2023) 194

- ♦ Flavor selection of $\bar{\nu}$ - ν CC DIS exploited in new program of precision measurements on H,C,O,Ca,Ar targets with the intense LBNF beams at Fermilab. PLB 834 (2022) 137469
- ♦ Comparison of $\mathcal{R}_{2,3}^{A}$ in 40 Ca and 40 Ar can probe isospin dependence of nuclear effects:
 - Same A=40: neutron excess in Ar $\beta=(Z-N)/A\sim -0.1$, Ca mostly isoscalar $\beta\sim -2.6\times 10^{-3}$;
 - Insights on physics mechanisms responsible for isovector effects at both nucleon and nuclear level.

- ♦ The off-shell modification of bound nucleons leads to an important nuclear correction which can be described by a universal function $\delta f(x)$ for all nuclei.
- ♦ The δf function determined from $^2H, ^3H, ^3He$ within our global QCD analysis is consistent with the one obtained from inclusive DIS data on nuclear targets with $A \geq 4$ (Kulagin and Petti) and from our earlier QCD analyses of 2H .
- We find no evidence for neutron-proton differences $\delta f^n \delta f^p$ in the off-shell function from the QCD analysis of MARATHON $\sigma^{^3He}/\sigma^{^3H}$ data.
 - \implies Excellent agreement with MARATHON data with $\delta f^n = \delta f^p$ and isoscalar aHT
- Our analysis indicates that the LT-HT interplay in the multiplicative HT model can bias both the n-p asymmetry δf^a and the d/u ratio extracted from MARATHON data.
- ♦ Substantial isovector effects on nuclear modifications of PDFs even with $\delta f^n = \delta f^p$ from convolution of different d/u shape with p and n spectral functions in nuclei.
 - \implies "Conventional" flavor dependence to be addressed before advocating $\delta f^n \neq \delta f^p$

Backup slides

- lacktriangle Determination of δf from QCD fits stable against all systematic variations studied
- ◆ Effect of model systematics comparable with the ones from use of different data sets
 ⇒ Consistency of results with nominal fit excludes model biases

RESULTS ON $\delta f(x)$

- Our results on $\delta f(x)$ from ²H consistent for all model variations agree with heavy target determination $(A \ge 4)$.
- ◆ Clear disagreement with CJ15 results from ²H in global QCD fits.
- ◆ Common meetings AKP-CJ held in 2020 and 2021 to try to understand differences
- ⇒ Our QCD fits using CJ input data and model settings (with mHT and aHT) are consistent with AKP results

Off-shell function determined from global QCD fits with different wave function models

PRD 96 (2017) 054005

OFF-SHELL FUNCTION FROM HEAVY TARGETS $(A \ge 4)$

- $\delta f(x)$ extracted phenomenologically from nuclear DIS ratios $\mathcal{R}_2(A,B) = F_2^A/F_2^B$:
 - Electron and muon scattering from BCDMS, EMC, E139, E140, E665 and NMC
 - Wide range of targets 4 He, 7 Li, 9 Be, 12 C, 27 AI, 40 Ca, 56 Fe, 64 Cu, 108 Ag, 119 Sn, 197 Au, 207 Pb
 - Systematic uncertainties including modeling, functional form and spectral/wave function variations

 \Longrightarrow Partial cancellation of systematics from spectral function in RATIOS $\mathcal{R}_2(A,B)$

lacktriangle Two-body 2 H spectral function determined by the wave function $\Psi_D(\mathbf{p})$:

$$\mathcal{P}(\varepsilon, \mathbf{p}) = 2\pi\delta \left(\varepsilon - \varepsilon_D + \frac{\mathbf{p}^2}{2M}\right) |\Psi_D(\mathbf{p})|^2$$

where $\varepsilon_D = M_D - 2M \approx -2.2$ MeV is the binding energy.

♦ Three-body ³He and ³H spectral functions from D bound state and continuum states:

$$\mathcal{P}_{3He}^{p} = f_{3He}^{D}(\mathbf{p})\delta\left(\varepsilon + \varepsilon_{32} - \varepsilon_{D} + \frac{\mathbf{p}^{2}}{4M}\right) + f_{3He}^{pn}(\varepsilon, \mathbf{p}); \qquad \mathcal{P}_{3He}^{n} = f_{3He}^{pp}(\varepsilon, \mathbf{p})$$

$$\mathcal{P}_{3H}^{n} = f_{3H}^{D}(\mathbf{p})\delta\left(\varepsilon + \varepsilon_{31} - \varepsilon_{D} + \frac{\mathbf{p}^{2}}{4M}\right) + f_{3H}^{pn}(\varepsilon, \mathbf{p}); \qquad \mathcal{P}_{3H}^{p} = f_{3H}^{nn}(\varepsilon, \mathbf{p})$$

where $\varepsilon_{32} \approx -7.72$ MeV and $\varepsilon_{31} \approx -8.48$ MeV are the 3 He and 3 H binding energies.

♦ Spectral function for $A \ge 4$ nuclei with mean field \mathcal{P}_{MF} and NN correlated \mathcal{P}_{cor} parts:

DEUTERON WAVE FUNCTION

lacktriangle Two-body nucleus whose spectral function determined by the wave function $\Psi_D(\mathbf{p})$:

$$\mathcal{P}(\varepsilon, \mathbf{p}) = 2\pi\delta \left(\varepsilon - \varepsilon_D + \frac{\mathbf{p}^2}{2M}\right) |\Psi_D(\mathbf{p})|^2$$

where $\varepsilon_D = M_D - 2M \approx -2.2$ MeV is the binding energy.

♦ The deuteron is a superposition of s- and d-wave states. Different models of $\Psi_D(\mathbf{p})$ based on the corresponding underlying N-N interaction potentials, which are constrained at low momentum (p < 300 MeV/c) by pp, pn and nn scattering data.

 $|\Psi_D(\mathbf{p})|^2$ gives deuteron momentum distribution

Different N-N potentials used

Paris: PRC 21 (1980) 861

CD-Bonn: PRC 63 (2001) 024001

AV18: PRC 84 (2011) 034003

WJC-1,2: PRC 82 (2010) 034004

[AKP, PRD 96 (2017) 054005]

PRD 107 (2023) L051506, arXiv: 2211.09514 [hep-ph]

Facility	Experiment	Beam	Beam energy		, ,	Normalization	2
racinty	Experiment	Deam	00	Observable			$\overline{ ext{NDP}}$
			(GeV)		factor	error(s) (%)	
$\overline{\mathrm{SLAC}}$	E49a	e	$11 \div 19.5$	$\frac{\mathrm{d}^2 \sigma^d}{\mathrm{d} E' \mathrm{d} \Omega}$	0.988(10)	2.1a	25/59
"	E49b	"	$4.5 \div 18$,,dii	0.996(10)	"	187/145
"	E87	,,	$8.7 \div 20$,,	1.000(9)	,,	114/109
"	E89b	"	$10.4 \div 19.5$,,	0.987(9)	,,	52/72
"	E139	"	$8 \div 24.5$,,	1.002(9)	"	8/17
"	E140	"	$3.7 \div 19.5$,,	1	1.7	25/26
CERN	BCDMS	μ	$100 \div 280$	$\frac{\mathrm{d}^2 \sigma^d}{\mathrm{d}x \mathrm{d}Q^2}$	0.989(7)	3	273/254
"	NMC	"	$90 \div 280$	F_2^d/F_2^p	1	< 0.15	155/165
DESY	HERMES	e	27.6	$\sigma^d/\sigma^{\overline{p}}$	1	1.4	21/30
JLab	E00-116	e	5.5	$\frac{\mathrm{d}^2 \sigma^d}{\mathrm{d} E' \mathrm{d} \Omega}$	0.981(10)	1.75	208/136
"	BONuS	"	4.2, 5.2	F_2^n/F_2^d	0.97(9)	$7 \div 10$	90/63
"	MARATHON	"	10.6	σ^d/σ^p	1	0.55	8/7
**	MARATHON	"	10.6	$ \sigma^{^3He}/\sigma^{^3H} $	1	0.7	20/22
Total							1186/1105

List of ²H, ³H, and ³He data used in the global QCD analysis