

LSM

The Laboratoire Souterrain de Modane

The laboratory
The science program

Jules Gascon (Université Lyon 1 and CNRS/IN2P3)

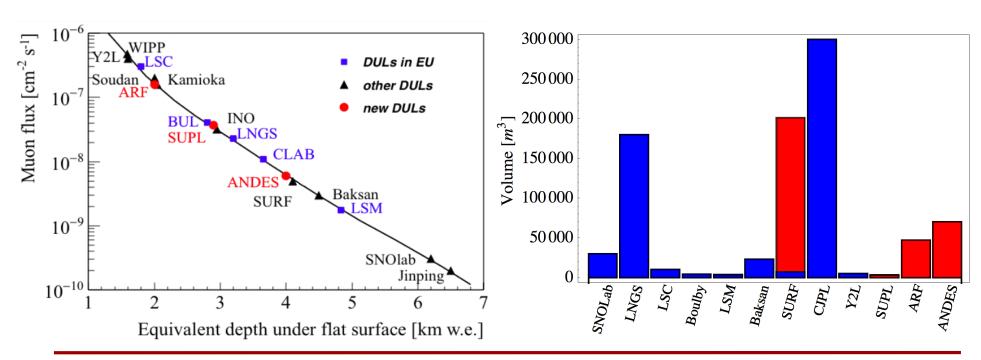


Where is LSM?

The location

Modane:

- 130 km from Grenoble
- 200 km from Lyon
- 100 km from Torino
- Experimental site midway in the 12km France/Italy road tunnel
- Surface lab (office, garage, small museum)
- French National Research
 Infrastructure

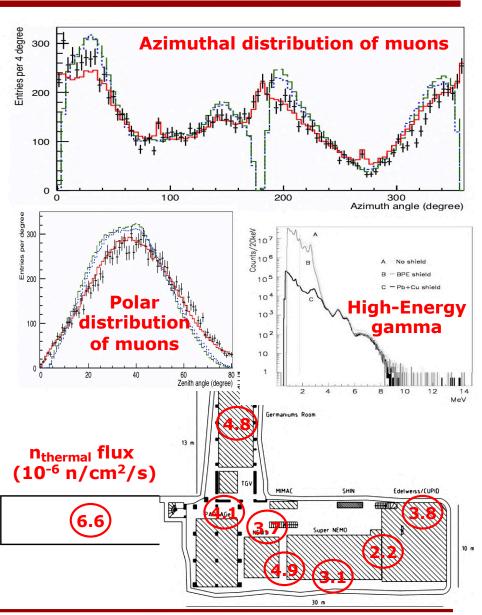


LSM: a deep underground lab in Europe

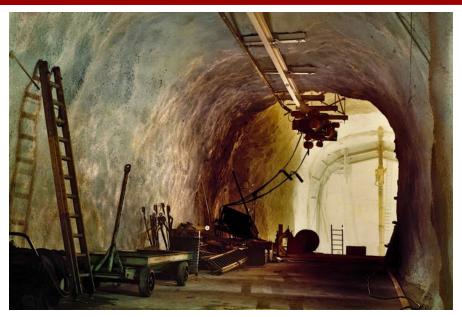
- **Deepest site in Europe** dedicated to Astropart., Nucl. & Part. Physics
- 4800 m.w.e: **4.5** $\mu/m^2/day$ (/5.5 LNGS); fast neutron = **1.6x10**⁻⁶ n/cm²/s
- Flexible access (hall accessible to trucks up to 9m);
- **Small** experimental surface: 400 m² (3500 m³)

cf: Canfranc 600 m², Boulby 1700 m², SNOLAB 5350 m², Gran Sasso 180000 m²

■ Natural radioactivity due to Radon: 15 Bq/m³ (<5 less than LNGS et LSC)

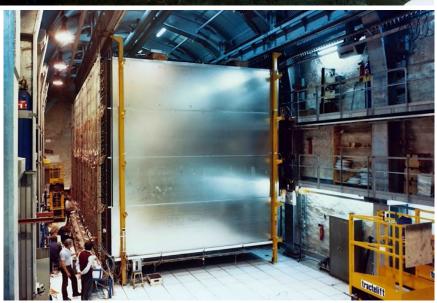


Background level measurements

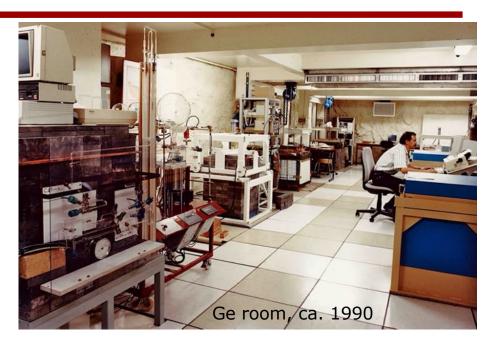

Since 1983, large corpus of measurements of various LSM backgrounds by experiments

Muons: total flux (4.5 μ/m²/d),
 and angular map
 [Rhode, PhD Thesis (Ruppertal, 1993) +
 Schmidt et al, Astrop. Phys. 44 (2013) 28]

- High-energy gamma rays.
 [Ohsumi et al, NIMA 482 (2002) 832]
- Fast neutrons (1.6x10⁻⁶ n/cm^{2/s})
 [Armengaud et al, Astrop. Phys. 47 (2013) 1]
- Thermal neutrons
 [Rozov et al, BRAS 74 (2012) 464;
 arXiv:1001.4383]
- Radon (~15 Bq/m³)
 [Hodak et al, J. Phys. G 46 (2019) 11, E.
 Armengaud et al, JINST 12 (2017) P08010]



Construction (1979-82) and first experiment

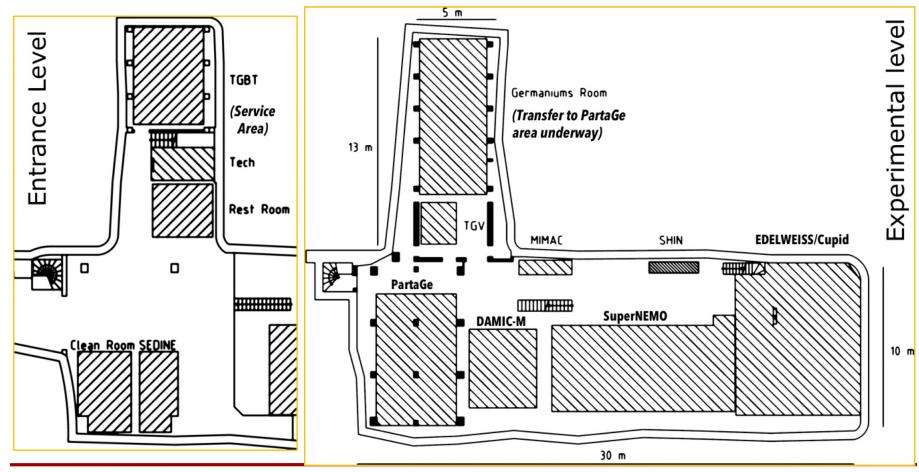


- Cavern dug out during the construction of the Fréjus Tunnel
- 1st experiment (1983-1989): proton lifetime

1990- onward: diversification

- Installation of an increasing number of germanium detectors for ultra-low radioactivity assays
- Installation in main hall of detector prototypes, followed by larger expts
- Main themes: ν-less double-β decay and dark matter searches
- ~400 users, 50% outside France

Main Hall, 1990



LSM Floor plan (ca 2020)

- Tight occupation of available 400 m²
- Plans to install 180 m² mezzanine level (over the crane access) above expt. Level
- Current conversion of EDELWEISS area for BINGO + DAMIC-M + future expts

Subatomic/Astroparticle physics Platform

- Hosting fundamental physics experiments, in particular those supported by IN2P3, with international, bi-national or national collaborations
- Host R&D and detector physics for future expts (larger detector deployed in larger DUL)
- Provide technical support to experiments
- Priority topics (well-adapted to depth+size): Light Dark Matter, R&D for ββθν

Germanium γ -ray assaying

- Very low radioactivity measurements
- Associated technology developments

Opening to multidisciplinary applications

• Host small experiments that can benefit from the exceptional low-radioactivity environment and the staff expertise in this domain (ex: biology, earth sciences..)

Coordination with networks of European underground laboratory

- Request by APPEC
- Common working groups in preparation

LSM Organization

Dedicated technical staff: ~8 people

Ultra Low Background Dept.

Christophe Vescovi

Integrated to LPSC (admin. + technical support from large IN2P3/UGA laboratory in Grenoble)

Detectors and materials

Ali Dastgheibi-Fard Guillaume Warot Martin de Raphelis (Temp)

LSM Tech Staff

Jean-Louis Margueron Christian Ranieri Aurélien Rojas Thierry Zampieri (buildings, safety)

Gamma spectrometry

Christian Ranieri
Guillaume Warot (radiation p.)

Safety & basic tunnel infrastructure: STRF

- Director of operation (C. Vescovi, LPSC)
- Scientific director (J. Gascon, Lyon University + CNRS/IN2P3)
- LSM Steering committee includes CNRS/IN2P3 & Université Grenoble Alpes
- LSM External Strategic Council: A. Iani (LNGS), S. Paling (Boulby), S. Schönert (TUM), N. Smith (Triumf) ... importance of DUL coordination in strategy discussion
- Scientific coordination of French efforts in Deep Underground Physics via DUPhy "Groupe de Recherche" (GDR): (https://gdrduphy.in2p3.fr/)

Dark Matter searches: EDELWEISS (1995-...)

- Germanium detectors cooled down to 20 mK
- Particle identification using phonon and ionization signals

EDELWEISS-I 1998 3x300g Best limits @50 GeV (2001) EDELWEISS-II-III 2005-2017 10x300g -> 24x870g Best limits @ 50 GeV (2009) & axions @ keV (2017)

EDELWEISS-SubGeV (2018-...)
Scaling 870g -> 33 g: eV-scale thresholds
Best Dark Photons limits @6 eV (2019)
& first Ge limits < 35 MeV/c²

EDELWEISS

D 12

See E. Guy talk

DEDELWEISS NbSi209 66V

With fiducial cut

Rejected by cut

M

20

Heat Energy (keVee)

2022-2024: **CRYOSEL** in BINGO 40 g Ge, tag of single electron-hole pair

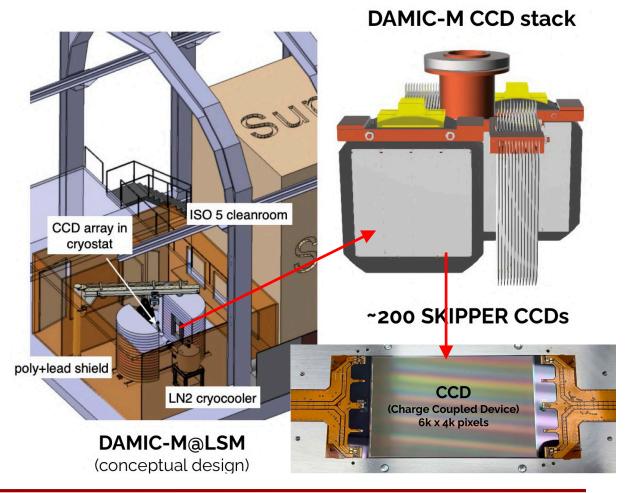
Sensor for discrimination of head-only events & top binsing

Go

Bottom & side binsing At sectode

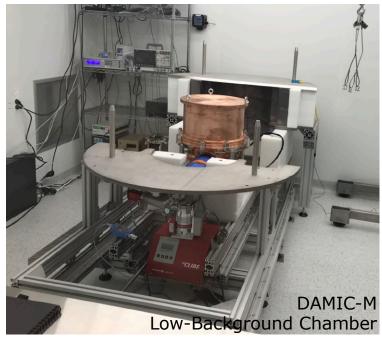
Future: TESSERACT @ LSM?

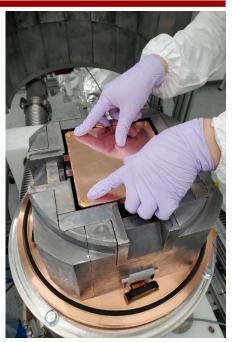
Light Dark Matter: NEWS-G and DAMIC-M

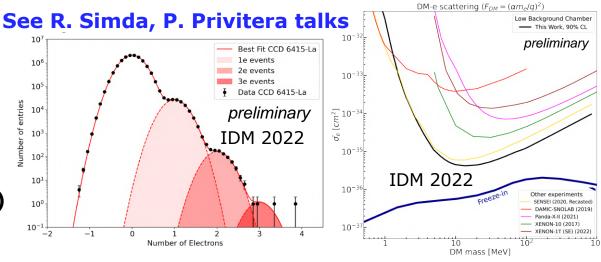

■ **NEWS-G** (2015-2020): large gaseous volume with single-anode readout (expt moved to SNOLAB since 2020)

SNOglobe test @LSM (2019)

 Also: MIMAC gaseous TPC for directional searches DAMIC-M (ERC, 2018-...): CCD with skipper
 read-out for sub-e⁻ resolution
 P. Privitera talks


200 CCD (1 kg Si) array run starting 2024



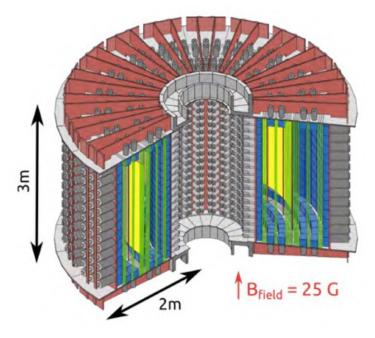

Most recent physics results: DAMIC-M LBC

- LBC: Low-Background Chamber with 2 CCDs
- Target mass 18 g
- Polyethylene and lead shield (+ roman lead)
- Operated in clean room
- 85.2 g.day exposure acquired in 2022
- $0.2 e^{-}$ resolution $(N_{skip}=650)$
- Best limits on e⁻-DM interactions via light mediator between 1.6 MeV/c² and 1 GeV/c²;
- Best limits for heavy mediator (1-15 MeV/c²)

PRL 130 (2023) 171003

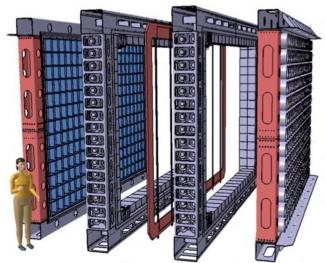
ββ0ν searches: NEMO and SuperNEMO

- Unique combination of tracking + calorimetry
- Full reconstruction of both electron tracks

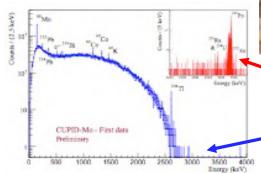

See C. Patrick talk

2015-...:

SuperNEMO demonstrator


NEMO-1 1989

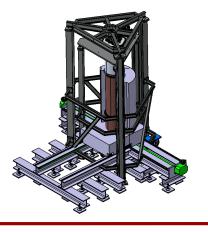
NEMO-3: 2000-2011

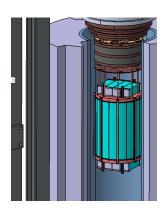




ββ0ν searches: CUPID-Mo and BINGO

- 20 Li2MoO4 scintillating crystals, 4 kg total
- Shared cooled-down at 20 mK with FDFI WFISS
- 19 months physics run
- Best limit for ¹⁰⁰Mo since
 NEMO-3:
 More recent results:
 see L. Imbert talk
 - $T_{1/2} > 1.8 \times 10^{24}$ year
 - $\langle m\beta\beta \rangle < (0.28-0.49) \text{ eV}$
- Key result for the design of the CUPID experiment
 @ Gran Sasso
- R&D for next generation of cryogenic detectors: BINGO (ERC, 2022-2026) See V. Berest talk





Rejected background (light detector)

Region of interest: 3034 ±10 keV

BINGO cryostat @LSM

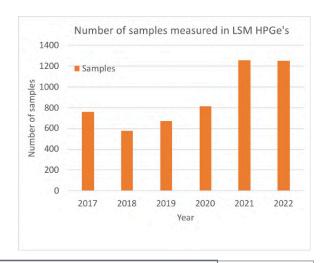
¹⁰⁰Mo + ¹³⁰Te scintillating targets

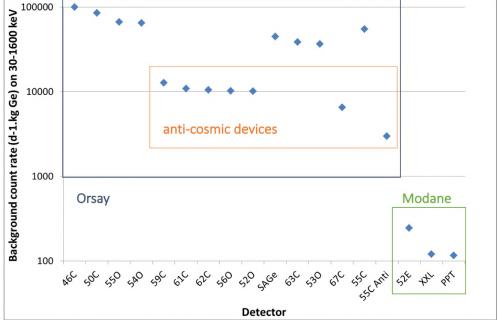
BGO internal shelding

Germanium platform (1)

Wide-range program for Astroparticles, Earth Sciences (sediment and ice core sample datation), environmental safety (CEA), biology, etc...

- Total of ~16 HPGe
- Astroparticle physics applications:
 - Material assays for experiments based at LSM (SuperNEMO, EDELWEISS, CUPID-Mo, ...), and also for other experiments (ex: JUNO)
 - Agreement with LNGS for long term
 (~ year) measurement of ECEC decay of
 ⁸²Se (6 kg) to excited state on large (600
 cc) Obelix HPGe

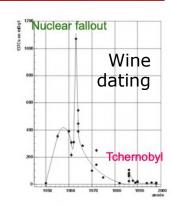

Obelix Ge @ LSM


Germanium platform (2)

Wide-range program for Astroparticles, Earth Sciences (sediment and ice core sample datation), environmental safety (CEA), biology, etc...

Pluri-disciplinary program open to academic and industrial users and partners

 Covering very lowest-rate background end of their measurements

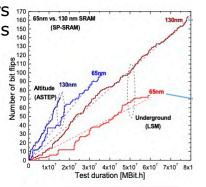


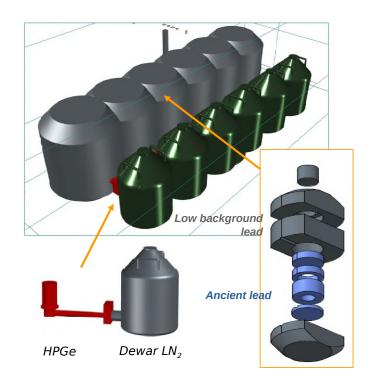
Germanium platform (3)

Wide-range program for Astroparticles, Earth Sciences (sediment and ice core sample datation), environmental safety (CEA), biology, etc...

- Pluri-disciplinary program open to academic & industrial users + partners
 - Covering very lowest-rate end of expts
 - France: IRSN, CEA, CENBG, IP2I, LSCE (Université Paris-Saclay, CEA, CNRS),
 EDYTEM (CNRS, U. Savoie Mont-Blanc)
 - International: JINR Dubna (Russia),
 UTEF Prague and SURO (Czech Republic)
- Non-HPGe program: effect of radiation [Lampe et al., Nature Scient. Report 2019]
 - Biology: seeds, bacteria, stem cells
 [Rocheteau et al., Cell Transplantation 2022]
 - Electronics (CMOS)
 [Autran et al., IEEE Nucl. Sc. 2009]

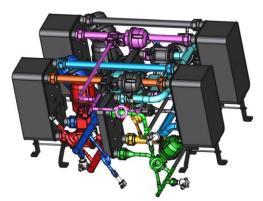
River sediment dating ¹³⁷Cs, ²¹⁰Pb


¹³⁷Cs in Sahara sand dust in Alps glaciers


Rate of errors 170 in Si chips 150 Bacteria

Current Ge facility upgrade: PARTAGe

- More efficient use of space (room for up to 22 HPGe)
- Shielding optimisation
- Ease of operation (LN₂ refill)


Other facility upgrade: Radon trapping

- 2005: First Radon trapping facility installed in a DUL
 - Strong Czech contribution + Marseille
- Initially, 120 m³/h flow of air with 15 mBq/m³ Rn concentration (~ /1000 ambient).
- Major upgrade of this aging facility under way

Upgrade:

 Staged approach to reach flow of 250 m³/h in time for SuperNEMO and DAMIC-M runs + reduce electricity & cooling needs

Design study for optimized refrigeration system

Other work on Rn implatation: see G. Warot talk

Conclusion

- physics program focused on experiments requiring stringent low-radioactivity requirements, and on the associated technological developments. Also open to other applications that can benefit from its depth, its expertise and its position within the French and EU landscape
- LSM physics program has already links with larger experiments in larger DUL
- Looking forward an increased partnership with the EU underground laboratories