Identification of au lepton and Central PreShower detector

Romain Madar CEA Saclay

DØ France

2009/04/01

Overview

Motivations

- The τ lepton
- Current method of identification
- Why use the Central PreShower?
- 2 First approach : CPS clusters
 - From the detector to the π^0
 - Discriminant variables
- Second approach : CPS digit
 - From the digit to the π^0
 - Discriminant variables
- One more variable (not from CPS)
- 5 Conclusion

First approach : CPS clusters Second approach : CPS digit One more variable (not from CPS) Conclusion The τ lepton Current method of identification Why use the Central PreShower

< /i>

The au lepton

Physical properties : $m_{ au} = 1.78$ GeV, $c\tau_{\text{life}} = 87~\mu\text{m}$

Reconstruction and τ type for hadronic decay :

- type 1
- type 2
- type 3

First approach : CPS clusters Second approach : CPS digit One more variable (not from CPS) Conclusion The τ lepton Current method of identification Why use the Central PreShower

The au lepton

Physical properties : $m_{ au} = 1.78$ GeV, $c au_{\mathsf{life}} = 87~\mu \mathsf{m}$

Reconstruction and τ type for hadronic decay :

- type 1 \equiv had cluster, exactly 1 track (π^{\pm} -like)
- type 2 \equiv had cluster, exactly 1 track, at least 1 EM cluster (ho^{\pm} -like)
- type 3 \equiv had cluster, at least 2 tracks (a_1^{\pm} -like)

First approach : CPS clusters Second approach : CPS digit One more variable (not from CPS) Conclusion The τ lepton **Current method of identification** Why use the Central PreShower?

Current τ ID

Jets could have the same experimental manifestations as hadronic τ .

\sim 12 discriminant variables allow to identify au

- track isolation variables,
- calo isolation variables,
- shape shower variables.

All theses variables are combined in a Neural Network.

Could we find new discriminant variable to improve τ ID?

First approach : CPS clusters Second approach : CPS digit One more variable (not from CPS) Conclusion The τ lepton Current method of identification Why use the Central PreShower?

Motivations

- The au lepton
- Current method of identification
- Why use the Central PreShower?
- 2 First approach : CPS clusters
 - From the detector to the π^0
 - Discriminant variables
- Second approach : CPS digit
 From the digit to the π⁰
 Discriminant variables
- One more variable (not from CPS)

5 Conclusion

First approach : CPS clusters Second approach : CPS digit One more variable (not from CPS) Conclusion The τ lepton Current method of identification Why use the Central PreShower?

Physical motivations

Physical idea : hadronic decay of τ type 2 has specific resonance which could be exploited : $\tau^{\pm} \rightarrow \rho^{\pm} \nu \rightarrow \pi^{\pm} \pi^{0} \nu \rightarrow \pi^{\pm} \gamma \gamma \nu$.

Problem : the granularity of calorimeter doesn't allow us to separate objects of the final state.

Possible solution : Use the central preshower (CPS) to try to mesure discriminant variables such as :

•
$$\theta_{\gamma-\gamma}$$
,

• $\theta_{\pi^0-\pi^{\pm}}$ and $m_{\rho^{\pm}}$ (\iff separate the π^{\pm} and the π^0).

Considering $m_{\phi} \approx 200 \text{ GeV}$ (concerning $\phi \to \tau^- \tau^+$), some order of magnitude show¹ that $\theta_{\gamma-\gamma}$ is not accessible contrary to $\theta_{\pi^0-\pi^\pm}$ (and so m_{ρ^\pm}):

Let's consider the CPS information (π^0) and the track (π^{\pm}) .

¹see my τ ID talk of 01/21/09

イロト イポト イヨト イヨト

First approach : CPS clusters Second approach : CPS digit One more variable (not from CPS) Conclusion The τ lepton Current method of identification Why use the Central PreShower?

Description of detector

The Central PreShower (CPS) is located right before the calorimeter and made of 3 layers of scintillating strips (2560/layer). It's radius is 73 cm from the beam. This detector works in central region : $-1.31 < \eta_d < 1.31$ (DØnote 5673)

First approach : CPS clusters Second approach : CPS digit One more variable (not from CPS) Conclusion The τ lepton Current method of identification Why use the Central PreShower?

4 A D A A B A

Samples used for this study :

- $Z \rightarrow \tau (\rightarrow \mu) \tau$ Monte Carlo (Alpgen) for signal,
- $W(\rightarrow \mu)$ + Jets Monte Carlo (Alpgen) for background.

Cuts applied :

- Exactly one μ :
 - loose and matched with central track;
 - track must be tight : $n_{hit}^{SMT} > 0$, dca < 0.02, $\frac{\chi^2}{ndf} < 4$;
 - NP isolation criteria : trk Iso, Calo Iso $< 2.5~\mbox{GeV}$;
 - $p_{\mu}^{T} > 12$ GeV.
- Exactly one au type 2 candidate :
 - $E_{ au} > 15$ GeV and $p_{ ext{track}}^{ au} > 5$ GeV ;
 - $\Delta R_{\mu- au} > 0.5$;
 - $n_{\tau \text{CPSclusters}} \geq 1$.

From the detector to the $\pi^{ extsf{c}}$ Discriminant variables

Motivations

- The τ lepton
- Current method of identification
- Why use the Central PreShower?
- 2 First approach : CPS clusters
 - From the detector to the π^0
 - Discriminant variables
- 3 Second approach : CPS digit
 From the digit to the π⁰
 Discriminant variables
- One more variable (not from CPS)
 - 5 Conclusion

From the detector to the $\pi^{\mathbf{0}}$ Discriminant variables

Reconstruction : when a EM particle goes trough CPS, several strips in each layer are hit. A clustering algorithm form clusters from strips ($D\emptyset$ note 4014).

Romain Madar - CEA/Irfu/SPP

au identification – DØ France

From the detector to the π^{C} Discriminant variables

Discriminant variables from CPS clusters

red = sig ($Z \rightarrow \tau_{had} \tau_{\mu}$ MC) blue = bkg ($W(\rightarrow \mu)$ +jets MC)

From the detector to the π^{C} Discriminant variables

red = sig ($Z \rightarrow \tau_{had} \tau_{\mu}$ MC) blue = bkg ($W(\rightarrow \mu)$ +jets MC) For the events with NN_{out}(τ) > 0.2 :

 $(\mathsf{NN}_{out}(\tau) = 1 \rightarrow \mathsf{true} \ \tau, \ \mathsf{NN}_{out}(\tau) = 0 \rightarrow \mathsf{fake} \ \tau)$

Romain Madar – CEA/Irfu/SPP τ identification – DØ France

From the digit to the $\pi^{\mathbf{0}}$ Discriminant variables

1 Motivations

- The τ lepton
- Current method of identification
- Why use the Central PreShower?
- Pirst approach : CPS clusters
 - From the detector to the π^0
 - Discriminant variables
- Second approach : CPS digit
 From the digit to the π⁰
 Discriminant variables
- One more variable (not from CPS)
 - 5 Conclusion

From the digit to the π^0 Discriminant variables

How to build one object from digits?

For each layer *i* :

- loop over strips j closed by the τ ($\Delta R < 0.3$) and save (η_j, ϕ_j, E_j) ;
- compute ($\langle \eta \rangle_i, \langle \phi \rangle_i, E_i^{\text{tot}}$) and RMS_i of deposited energy;

Combine 3 layers :

- take into account a particle far away from τ which can light on a strip closed by τ;
- Use correlations between the 3 layers ;

Result : One cluster with $(\eta, \phi, E^{tot}, RMS)$.

From the digit to the π^0 Discriminant variables

Discriminant variables

red = sig ($Z \rightarrow \tau_{had} \tau_{\mu}$ MC) blue = bkg ($W(\rightarrow \mu)$ +jets MC)

16/20

From the digit to the π^0 Discriminant variables

 $\label{eq:red} \begin{array}{l} \mbox{red} = \mbox{sig} \ (Z \to \tau_{\rm had} \tau_{\mu} \ \mbox{MC}) \ \mbox{blue} = \mbox{bkg} \ (W(\to \mu) + \mbox{jets} \ \mbox{MC}) \\ \mbox{For the events with} \ \mbox{NN}_{out}(\tau) > 0.8 : \end{array}$

Romain Madar - CEA/Irfu/SPP

 τ identification – DØ France

Motivations

- The τ lepton
- Current method of identification
- Why use the Central PreShower?
- 2 First approach : CPS clusters
 - From the detector to the π^0
 - Discriminant variables
- 3 Second approach : CPS digit
 From the digit to the π⁰
 Discriminant variables
- One more variable (not from CPS)

Conclusion

One more variable (not from CPS)

red = sig ($Z \rightarrow \tau_{had}\tau_{\mu}$ MC) blue = bkg ($W(\rightarrow \mu)$ +jets MC) One more discriminant variable : log(|dca|) (where dca is the τ distance of closest approach).

イロト イ得ト イヨト イヨト

Concerning the last results :

- The CPS seems to be useful for τ identification if we consider the RMS of deposited energy (which is stable with Neural Net cut),
- log(|dca|) seems to be a discriminant variable (which is stable with Neural Net cut).

Outlook :

- Train the neural net with theses new variables
- Exploit the dca variable for τ type 3 (should be efficient : more than one track),
- Try the official training with a QCD sample instead of a W + jet MC sample.