Resultat preliminaire du WH→Ivbb a ASPEN

Gregorio Bernardi, Jonathan Brown, Duncan Brown, <u>Yuji Enari</u>, Ken Herner, Nils Huske,

Sebastien Greder, Jeremie Lellouch, Michiel Sanders,

Isabelle Ripp-Baudot, Jianming Qian, Chun Xu

April 1st 2008 Reunion DØ France

WH analysis

- Runlla + Runllb 2.7 fb⁻¹
- Approved as preliminary result
- This will be good reference version

Feature of this analysis

Well established selection criteria

- good description at pretag level
- bID: direct tagging.
 - taggability is updated with vertex confirmation.
- Multivariate technique: NN with ME discriminant

Almost all systematic error are re-evaluated.

Data and MC samples for p20

Data

Electron: non-recaffed sample (1609 pb⁻¹)
 CAF_EMinclusive_PASS4_p21.08.00
 CAF_EMinclusive_PASS4_p21.10.00_p20.12.01
 CAF_EMinclusive_PASS4_p21.10.00_p20.12.02

Muon: (1731 pb⁻¹) CAF_MUinclusive_PASS4-p21.10.00_p21.12.00 CAF_MUinclusive_PASS4-p21.10.00_p21.12.01 CAF_MUinclusive_PASS4-p21.10.00_p21.12.02_summer2008

MC: non-recaffed sample. (CAF-MCv2)

- <u>W / Z + jet</u>
 - Alpgen+Pythia, HF skimmed
 - W+ Ip, Wcc+Ip, Wbb+Ip
 - p20.08.xx, p20.09.xx
- <u>Top</u>
 - Alpgen tt bar + lp
 - p20.08.xx p20.09.xx
- Single top
 - p20.09.xx.

Search for WH with ME + NN

<u>Di boson</u>

- Pythia
- WW, WZ, ZZ
 p20.08.xx, p20.09.xx
- Higgs
 - Pythia WH, ZH
 p20.08.xx, p20.09.xx

Not use due to re-caffed data set

+ p17 (1036 pb⁻¹)

= <u>2.64 fb⁻¹</u>

+ p17 (1046 pb⁻¹)

= <u>2.78 fb⁻¹</u>

(3% from Cal noise effect need to be scaled)

Selection Criteria on p20

QCD estimation

- Estimate from DATA using Matrix Method
 - Determine <u># of QCD and shape</u> by bin by bin Matrix Method.
- Fake rate estimation
 - Apply exact same cut including trigger requirement except MET.
 - Apply correction to deal with real electron in MET<10 GeV using alpgen MC (normalized by luminosity).
 - Dependence:
 - Pt, $\Delta \phi$ (lepton,MET), Trigger list, Jet multiplicity, CC, EC.
- Need to apply tighter triangle cut

1st Apr 2009

Ratio (data / WH-MC) on WtrMass vs ME1

Combined plot p17+p20, mu + electron

Taggability with vertex confirmation

- Updated taggability requirement, and propaged to evaluation on Scale factors.

Recent study Murilo:

Scale factor for vertex conf. is not 1.

At high eta region, we may need ~ 30% correction.

 \rightarrow Is this true for bjets?

Agreement at high eta in double tag sample

Good agreement at high η :

Inefficiency due to vertex confimation on b-jet seems much smaller.

B tagging

- Using NN tagger. Treatment for MC event
 - Use direct tagging approach
 - Better description of detector part
 - Various correlation can be taken account.
 ex. Jets at low ∆R region, etc..
 - Scale factor is obtained from TRF data / TRF MC.
- Operating point
 - Tight for single tag (mistag: ~ 0.5%)
 OldLoose for double tag (mistag: ~1.5%)

→ make orthogonal sample by direct tagging. Possible migrations due to data/MC scale factor is also taken account.

Tagged dijet mass, 2jet, 3jet

Matrix Element approach

Neural Net

- NNet: 1 hidden layer, same number of node with input variable.
- Training (number of epoch with error is minimal.)
 - sample: BG: Wbb, Signal: WH(W \rightarrow ev or μ v)
 - Train NN each mass point, p17 and p20 separately.
 - Train NN separately for single tag event and double tag event
 - Train NN separately for muon and electron
- Input variables

\rightarrow 8 x mass point

[180] MEout115STexcl (Tight) / Log-y

NN output

Systematic uncertainties

- Luminosity : 6.1%
- Trigger: 3~4% for electron, 5% for muon
- Electron ID: 4.2% (ID : 4%, Smearing: 2%)
- Muon ID: 4.1% (ID: 3.0%, trk match: 2%, Smearing: 2%)
- Jet: 3.9% (ID 3%, JES : 2~5%), 2~6% JSSR, Multiplicity: 4.2%
- QCD: 26% from matrix method (including stat. error in tagged samples).
- B-tagging: b-jet: 3 %, c-jet: 6% per jet including taggability. double tag : 25%, single: 15% for light jet.
- Cross section: ttbar 10%, diboson:6%, WH: 6%
- Alpgen K-factor: Determined from data
 - Error : Wbb 20% Wjj: ~5% (from QCD error)
- Checked following dependences
 - Lepton ID, trigger, Jes, JSSR, Vertex reweighting, Luminosity reweighting, ALPGEN reweighting, b-ID, Wpt shape
- Shape uncertainties from reweighting function.
 - Off/on reweighting function on dijet mass distribution.

Inputs to collie

 Combine Runlla, Runllb, e, mu, 2jet(NNoutput), 3jet (dijet mass), 1-tag, 2tag. → <u>Total 16 inputs</u>.

	electron	electron	electron	electron	muon	muon	muon	muon
	2jet-1b	2jet-2b	3jet-1b	3jet-2b	2jet-1b	2jet-2b	3jet-1b	3jet-2b
	IIa IIb	IIa IIb	IIa IIb	IIa IIb	IIa IIb	IIa IIb	IIa IIb	IIa IIb
DZero_Lumi	ХХ	хх	ХХ	ХХ	ХХ	ХХ	хх	ХХ
Lumi	ХХ	ХХ	ХХ	ХХ	ХХ	ХХ	ХХ	ХХ
JESID	ХХ	ХХ	ХХ	ХХ	ХХ	ХХ	ХХ	ХХ
bTag_Tagga_HF	ХХ	ХХ	ХХ	ХХ	ХХ	ХХ	ХХ	ХХ
bTag_Tagga_LF_WH	ХХ	ХХ	ХХ	ХХ	ХХ	ХХ	ХХ	ХХ
EMID	ХХ	ХХ	ХХ	ХХ				
$Bkgd_Xsec_EW$	ХХ	ХХ	ХХ	ХХ	ХХ	хх	ХХ	ХХ
Jet_NN_MMLM	ХХ	ХХ			ХХ	ХХ		
$Bkgd_Xsec_NN_HF_WH$	Х	Х			Х	Х		
Bkgd_WbbRW_NN_shape	ХХ	ХХ			ХХ	ХХ		
$Bkgd_QCDev$	ХХ	ХХ	ХХ	ХХ				
Bkgd_WjjRW_NN_shape	ХХ	ХХ			ХХ	хх		
$Bkgd_Xsec_Top$	ХХ	ХХ	ХХ	ХХ	ХХ	хх	ХХ	ХХ
$Bkgd_Xsec_singletop$	ХХ	ХХ	ХХ	ХХ	ХХ	хх	хх	ХХ
Jet_DJ_MMLM			ХХ	ХХ			хх	ХХ
Bkgd_Xsec_DJ_HF_WH			Х	Х			Х	Х
Bkgd_WbbRW_DJ_shape			ХХ	ХХ			хх	ХХ
Bkgd_WjjRW_DJ_shape			ХХ	ХХ			ХХ	ХХ
Bkgd_Xsec_NN_HF_WH_IIb	Х	Х			Х	Х		
Bkgd_Xsec_DJ_HF_WH_IIb			Х	Х			Х	Х
MUTrigger_WH					хх	хх	хх	ХХ
MUID					ХХ	ХХ	хх	ХХ
$Bkgd_QCDmv$					ХХ	ХХ	хх	хх
WHNLO	ХХ	ХХ	ХХ	ХХ	ХХ	ХХ	ХХ	ХХ

Results with CLFIT2 (with full systematic)

Limit ratio to SM expectation at M_H=115 GeV: Expected (Observed)

Analysis	elec.	elec.	elec.	elec.	muon	muon	muon	muon
	cut-b.	NN	ME	NN+ME	cut-b.	NN	ME	NN+ME
2007/2j/IIa	20.3(31.8)	_	_	_	21.7(20.8)	_	-	
IIa / 2 jet	18.0(23.8)	15.6(22.2)	15.9(16.3)	14.6(15.0)	17.7(11.5)	15.3(10.1)	14.0(12.3)	14.4(12.3)
IIa / 2+3	17.0(25.8)	15.1(23.1)	15.6(17.1)	14.4(15.6)	17.0(11.5)	14.9(10.3)	13.7(12.9)	14.0(12.5)
IIb / 2 jet	15.9(18.0)	12.8(14.3)	13.0(9.8)	12.6(11.8)	13.7(17.1)	12.0(11.7)	10.4(13.5)	10.2(12.1)
IIb / 2+3	15.3(18.9)	12.8(15.2)	13.0(10.7)	12.4(12.6)	12.9(13.8)	11.6(9.9)	10.6(11.6)	9.9(10.5)
IIa+b / 2 jet	11.9(15.7)	10.2(13.9)	10.4(8.9)	10.0(10.1)	10.7(9.6)	9.8 (7.2)	8.6 (9.1)	8.7 (8.9)
IIa+b / 2+3	11.2(17.2)	9.8(14.5)	9.8(9.6)	9.6(10.5)	10.3 (8.3)	9.3~(~6.5)	8.2(8.2)	8.3 (7.8)

Final result with 2.7 fb-1 :

Analysis	$e + \mu$, cut-b.	$e + \mu$, NN	$e + \mu$, ME	$e + \mu$, NN+ME
3-2007/2 jet /1.0 fb ⁻¹	14.2(18.8)	-(-)	-(-)	- (-)
IIa / 2 jet	12.4(10.7)	10.9(10.8)	10.6(10.1)	10.5(10.1)
IIa / $2+3$	11.8(12.2)	10.5(11.7)	$10.1 \ (10.9)$	10.0 (10.6)
IIb / 2 jet	10.3(13.0)	8.9(9.0)	8.3(7.8)	8.1 (8.7)
IIb / $2+3$	9.7(11.3)	8.7(8.2)	8.1(7.3)	7.8(7.6)
IIa+b / 2 jet	7.9(8.8)	7.2(7.3)	6.6(6.3)	6.6(7.4)
IIa+b / $2+3$	7.5(8.5)	6.9(7.1)	6.4(6.1)	6.4(6.7)

Result for electron and muon

Combined result

Search for WH with ME + NN

Combined result

Search for WH with ME + NN

Conclusion

 This analysis has now been approved by EB, and released at ASPEN, also used in Tevatron combination.

- On going:
 - Update with full data set.
 - Re-optimizing
 - event selection.
 - B-tagging part.
 - Improve on Multivariate technique.

Back up

Latest factor on this analysis

• K' x S (factor of top of ALPGEN cross section)

	channel	2 jet	3 jet
p17	Electron (CC)	1.65 ± 0.01	1.62 ± 0.03
	Muon	1.63 ± 0.01	1.80 ± 0.03
p20	Electron (CC)	1.85 ± 0.01	2.05 ± 0.03
	Muon	1.52 ± 0.01	1.73 ± 0.03

\rightarrow Assign 10% systematic error on this.

• HF factor (Additional factor on HF MCs.)

data	btag OP	VeryTight	Tight	oldLoose
p17	Electron	0.99 ± 0.02	0.99 ± 0.02	0.97 ± 0.03
	Muon	1.02 ± 0.02	1.02 ± 0.02	1.01 ± 0.03
p20	Electron	1.29 ± 0.02	1.36 ± 0.02	1.34 ± 0.03
	Muon	1.45 ± 0.02	1.52 ± 0.02	1.38 ± 0.03

→ Assign 20% systematic error on this.

About EMID on non-recaffed data set

• At last meeting, I reported EMID efficiency in SPC file may not correct. It's confirmed by EMID group.

Red point: WH Black: in SPC file

- But, it turned out its is due to definition of denominator is not same. So that data efficiency in SPC file is also low.
- Efficiency ratio (correction factor to MC) is correct.

 \rightarrow We boost 15% due to this observation, it turned out this correction is not valid, so we removed this 15% correction.

ALPGEN mis-modeling correction

ratio of data to MC

JetsEta 10 TR 120

ALPGEN is not perfect. Need to correct mis-modeling. Functions is obtained from data. Func = (Data-QCD-TOP,etc) / (W/Z+jet MC). Function from p17 is used on p20

After reweigting

ratio of data to MC

Procedure to get ME result

- Main issue is ME needs integrate all events.
 - Integration time: 1~2 min / event.
 - In total, 2 ~ 4 weeks to integrate all RunIIb sample.
 - → We started integration as soon as all smearing was fixed. Before fixing correction factor or b-tagging.

